首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
测绘学   3篇
大气科学   4篇
地球物理   30篇
地质学   18篇
海洋学   3篇
天文学   2篇
自然地理   9篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   5篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  1995年   2篇
  1991年   1篇
  1990年   2篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1976年   2篇
  1973年   2篇
  1972年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有69条查询结果,搜索用时 234 毫秒
1.
Following a period of net uplift at an average rate of 15±1 mm/year from 1923 to 1984, the east-central floor of Yellowstone Caldera stopped rising during 1984–1985 and then subsided 25±7 mm during 1985–1986 and an additional 35±7 mm during 1986–1987. The average horizontal strain rates in the northeast part of the caldera for the period from 1984 to 1987 were: 1 = 0.10 ± 0.09 strain/year oriented N33° E±9° and 2 = 0.20 ± 0.09 strain/year oriented N57° W±9° (extension reckoned positive). A best-fit elastic model of the 1985–1987 vertical and horizontal displacements in the eastern part of the caldera suggests deflation of a horizontal tabular body located 10±5 km beneath Le Hardys Rapids, i.e., within a deep hydrothermal system or within an underlying body of partly molten rhyolite. Two end-member models each explain most aspects of historical unrest at Yellowstone, including the recent reversal from uplift to subsidence. Both involve crystallization of an amount of rhyolitic magma that is compatible with the thermal energy requirements of Yellowstone's vigorous hydrothermal system. In the first model, injection of basalt near the base of the rhyolitic system is the primary cause of uplift. Higher in the magmatic system, rhyolite crystallizes and releases all of its magmatic volatiles into the shallow hydrothermal system. Uplift stops and subsidence starts whenever the supply rate of basalt is less than the subsidence rate produced by crystallization of rhyolite and associated fluid loss. In the second model, uplift is caused primarily by pressurization of the deep hydrothermal system by magmatic gas and brine that are released during crystallization of rhyolite and them trapped at lithostatic pressure beneath an impermeable self-sealed zone. Subsidence occurs during episodic hydrofracturing and injection of pore fluid from the deep lithostatic-pressure zone into a shallow hydrostatic-pressure zone. Heat input from basaltic intrusions is required to maintain Yellowstone's silicic magmatic system and shallow hydrothermal system over time scales longer than about 105 years, but for the historical time period crystallization of rhyolite can account for most aspects of unrest at Yellowstone, including seismicity, uplift, subsidence, and hydrothermal activity.  相似文献   
2.
In a statistical pattern recognition context, discriminant analysis is designed to classify, when possible, objects into predefined categories. Because this method requires precise input data, uncertainties cannot be propagated in the classifying process. In real case studies, this could lead to drastic misinterpretations of objects. A new nonparametric algorithm based on interval arithmetic has thus been developed to propagate interval-form data. They consist in calculating interval conditional probability density functions and interval posterior probabilities. Objects are eventually assigned to a subset of classes, consistent with the data and their uncertainties. The classifying model is thus less precise, but more realistic than the standard one, which we prove on a real case study.  相似文献   
3.
4.
The solubility of quartz in 2, 3, and 4 molal NaCl was measured at 350°C and pressures ranging from 180 to 500 bars. The molal solubility in each of the salt solutions is greater than that in pure water throughout the measured pressure range, with the ratio of solubility in NaCl solution to solubility in pure water decreasing as pressure is increased. The measured solubilities are significantly higher than solubilities calculated using a simple model in which the water activity in NaCl solutions decreases either in proportion to decreasing vapor pressure of the solution as salinity is increased or in proportion to decreasing mole fraction of water in the solvent.  相似文献   
5.
An empirical method of estimating the last temperature of water-rock interaction has been devised. It is based upon molar Na, K and Ca concentrations in natural waters from temperature environments ranging from 4 to 340°C. The data for most geothermal waters cluster near a straight line when plotted as the function log (NaK) + β log [ √ (Ca)Na] vs reciprocal of absolute temperature, where β is either 13 or 43 depending upon whether the water equilibrated above or below 100°C. For most waters tested, the method gives better results than the NaK methods suggested by other workers. The ratio NaK should not be used to estimate temperature if √ (MCa)MNa is greater than 1. The NaK values of such waters generally yield calculated temperatures much higher than the actual temperature at which water interacted with the rock.A comparison of the composition of boiling hot-spring water with that obtained from a nearby well (170°C) in Yellowstone Park shows that continued water-rock reactions may occur during ascent of water even though that ascent is so rapid that little or no heat is lost to the country rock, i.e. the water cools adiabatically. As a result of such continued reaction, waters which dissolve additional Ca as they ascend from the aquifer to the surface will yield estimated aquifer temperatures that are too low. On the other hand, waters initially having enough Ca to deposit calcium carbonate during ascent may yield estimated aquifer temperatures that are too high if aqueous Na and K are prevented from further reaction with country rock owing to armoring by calcite or silica minerals.The Na-K-Ca geothermometer is of particular interest to those prospecting for geothermal energy. The method also may be of use in interpreting compositions of fluid inclusions.  相似文献   
6.
Water and gas samples from research wells in hydrothermal areas of Yellowstone National Park, U.S.A., have been mass spectrometrically analyzed for their rare gas contents and isotopic composition. In agreement with previous findings, the rare gases have been found to originate from infiltrating run-off water, saturated with air at 10 to 20°C. The atmospheric rare gas retention values found for the water varied between 3 and 87 per cent. The fine structure of the Ar, Kr and Xe abundance pattern in the water reveals fraotionational enrichment of the heavier gases due to partial outgassing of the waters. Radiogenic He and Ar have been detected. No positive evidence for magmatic water contribution has been found. Nevertheless, additions of magmatic waters free of rare gas can not be excluded, but if present the proportion is significantly less than 13 to 36 per cent.  相似文献   
7.
Temperatures of aquifers feeding thermal springs and wells in Long Valley, California, estimated using silica and Na-K-Ca geothermometers and warm spring mixing models, range from 160/dg to about 220°C. This information was used to construct a diagram showing enthalpy-chloride relations for the various thermal waters in the Long Valley region. The enthalpy-chloride information suggests that a 282 ± 10°C aquifer with water containing about 375 mg chloride per kilogram of water is present somewhere deep in the system. That deep water would be related to 220°C Casa Diablo water by mixing with cold water, and to Hot Creek water by first boiling with steam loss and then mixing with cold water. Oxygen and deuterium isotopic data are consistent with that interpretation. An aquifer at 282°C with 375 mg/kg chloride implies a convective heat flow in Long Valley of 6.6 × 107 cal/s.  相似文献   
8.
The distribution of individual values of the apparent resistivities given by two M-T soundings made over two different kinds of subsurface geology is described and computed. This distribution is Gaussian only if the logarithm of the resistivity values are used. Consequently, a statistical stability is obtained when the mean and standard deviation are calculated in log-space. Log-space is a mathematical space that may have one or more logarithmical dimensions; in this case two.  相似文献   
9.
We present a validation analysis of a regional climate model coupled to a distributed one dimensional (1D) lake model for the Caspian Sea Basin. Two model grid spacings are tested, 50 and 20 km, the simulation period is 1989–2008 and the lateral boundary conditions are from the ERA-Interim reanalysis of observations. The model is validated against atmospheric as well as lake variables. The model performance in reproducing precipitation and temperature mean seasonal climatology, seasonal cycles and interannual variability is generally good, with the model results being mostly within the observational uncertainty range. The model appears to overestimate cloudiness and underestimate surface radiation, although a large observational uncertainty is found in these variables. The 1D distributed lake model (run at each grid point of the lake area) reproduces the observed lake-average sea surface temperature (SST), although differences compared to observations are found in the spatial structure of the SST, most likely as a result of the absence of 3 dimensional lake water circulations. The evolution of lake ice cover and near surface wind over the lake area is also reproduced by the model reasonably well. Improvements resulting from the increase of resolution from 50 to 20 km are most significant in the lake model. Overall the performance of the coupled regional climate—1D lake model system appears to be of sufficient quality for application to climate change scenario simulations over the Caspian Sea Basin.  相似文献   
10.
Abstract

When the permeability of an aquifer varies with depth, the velocity of the water varies in proportion to the permeability. A numerical method of solution is introduced which Represents this feature. Examples are cited which demonstrate that this variation in permeability influences the amount of water that is stored in the aquifer following recharge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号