首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
地质学   4篇
海洋学   7篇
  2013年   4篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
  1988年   2篇
  1975年   1篇
排序方式: 共有11条查询结果,搜索用时 531 毫秒
1.
Geological and geophysical surveys of active submarine volcanoes offshore and southeast of Epi Island, Vanuatu, New Hebrides Arc, have delineated details of the structure and acoustic stratigraphy of three volcanic cones. These submarine cones, named Epia, Epib, and Epic, are aligned east-west and spaced 3.5 km apart on the rim of a submerged caldera. At least three acoustic sequences, of presumed Quaternary age, can be identified on single-channel seismic-reflection profiles. Rocks dredged from these cones include basalt, dacite, and cognate gabbroic inclusions with magmatic affinities similar to those of the Karua (an active submarine volcano off the southeastern tip of Epi) lavas.  相似文献   
2.
A sampling expedition has shown that largely hydrogenetic marine ferromanganese deposits occur in the Christmas Island region south of Java (~10°S), as small nodules on seamount slopes and abyssal plains (red clay), and as thick crusts on volcanic ridges and seamounts. Vernadite is dominant, with birnessite, jacobsite and todorokite common. Nodules were recovered in 25% of free-fall grab stations in water 4600-5900 m deep, and are not abundant where present. The nodules average 9.6% Fe, 19.7% Mn, 0.51% Ni, 0.49% Cu, and 0.12% Co. Crusts are common in water 1450-3700 m deep, with average deposition rates of 1-1.5 mm / m.y. The crusts average 13.9% Fe, 16.2% Mn, 0.35% Ni, 0.11% Cu, and 0.44% Co. Cobalt grades are higher (~0.8%) in shallower water ( < 2500 m), so future exploration should concentrate on depths of 500-1500 m near the oxygen minimum zone.  相似文献   
3.
The Fairway Basin is a large, generally north – south-trending, sediment-filled structure in water 1500 – 3000 m deep, on the eastern slope of the Lord Howe Rise in the Tasman Sea, and is partly within Australian jurisdiction. It was poorly known until a few years ago, when seismic profiling and piston coring cruises were carried out. The basin, about 1100 km long and 120 – 200 km wide, can be divided into three segments—north, central and south—that trend northwest, north and north-northwest, respectively. All three segments probably formed by thinning of continental crust during breakup of Lord Howe Rise and surrounding aseismic continental ridges in the Late Cretaceous and Paleocene. Normal faulting, large inputs of terrigenous sediment and subsidence to bathyal marine depths occurred during that time. A period of compression, perhaps related to overthrusting on New Caledonia, occurred in the Eocene, leading to uplift (and in parts, erosion) of northern Lord Howe Rise, and reversal of faulting in the basin. By the Oligocene, the area was again in bathyal depths, and pelagic ooze and some turbidites accumulated. The basinal sequence is generally 2000 – 4000 m thick, with 1200 – 3200 m of Cretaceous to Eocene sediment concentrated in depocentres, capped by 500 – 800 m of Oligocene and younger sediment. In the depocentres, numerous sedimentary diapirs pierce sedimentary sequences. The sedimentary diapirs appear to be fed by Cretaceous muds deposited during rifting. Often, these diapirs are overlain by faults extending to the seafloor, and hummocky bathymetry is possibly caused by fluid escape. The overall geology suggests that the Fairway Basin may be a large frontier hydrocarbon province. Seismic profiles display a bottom-simulating reflector above many depocentres, 500 – 700 m below the seafloor. The bottom-simulating reflector has positive polarity, which could result from a diagenetic phase transformation, a thin gas hydrate layer with a sharp top, or from the sharp base of a gas layer (probably beneath gas hydrates). Standard piston cores taken above diapirs and apparent fluid-escape features have recovered little gas. Other than drilling, the next steps in assessing petroleum potential are to clearly document fluid-escape structures, and to sample any fluids emitted for hydrocarbons.  相似文献   
4.
Complementary to previous work mainly based on seismic interpretation, our compilation of geophysical data (multibeam bathymetry, gravity, magnetic and seismic) acquired within the framework of the ZoNéCo (ongoing since 1993) and FAUST (1998–2001) programs enables us to improve the knowledge of the New Caledonia Basin, Fairway Basin and Fairway Ridge, located within the Southwest Pacific region. The structural synthesis map obtained from geophysical data interpretation allows definition of the deep structure, nature and formation of the Fairway and New Caledonia Basins. Development of the Fairway Basin took place during the Late Cretaceous (95–65 Ma) by continental stretching. This perched basin forms the western margin of the New Caledonia Basin. A newly identified major SW–NE boundary fault zone separates northern NW–SE trending segments of the two basins from southern N–S trending segments. This crustal-scale fault lineament, that we interpret to be related to Cretaceous-early Cainozoic Tasman Sea spreading, separates the NW–SE thinned-continental and N–S oceanic segments of the New Caledonia Basin. We can thus propose the following pattern for the formation of the study area. The end of continental stretching within the Fairway and West Caledonia Basins ( 65–62 Ma) is interpreted as contemporaneous with the onset of emplacement of oceanic crust within the New Caledonia Basin’s central segment. Spreading occurred during the Paleocene (62–56 Ma), and isolated the Gondwanaland block to the west from the Norfolk block to the east. Finally, our geophysical synthesis enables us to extend the structural Fairway Basin down to the structural Taranaki Basin, with the structural New Caledonia Basin lying east of the Fairway Basin and ending further north than previously thought, within the Reinga Basin northwest of New Zealand.  相似文献   
5.
Quaternary sediments in the Woodlark Basin and New Georgia Sound, adjacent to the Solomon Islands volcanic arc, are hemipelagic. They consist of mixtures of clay minerals, calcareous plankton (foraminifera, coccoliths, and pteropods), and sand- and silt-sized volcanic debris. Variations in sediment composition are related primarily to distance from land (the source of volcanic components), water depth (because of the Aragonite and Calcite Compensation Depths), and bathymetric isolation. Much of the sedimentary debris is delivered to the basin by turbidity currents and other mass movements; little material is supplied by ash fall. Sedimentation rates appear to exceed 3 cm/1,000 years in New Georgia Sound, and range from 2 to 4.5 cm/1,000 years in the Woodlark Basin.  相似文献   
6.
The submarine Kenn Plateau, with an area of about 140 000 km2, lies some 400 km east of central Queensland beyond the Marion Plateau. It is one of several thinned continental fragments east of Australia that were once part of Australia, and it originally fitted south of the Marion Plateau and as far south as Brisbane. It is cut into smaller blocks by east- and northeast-trending faults, with thinly sedimented basement highs separated by basins containing several kilometres of sediment. In the Cretaceous precursor of the Kenn Plateau, Late Triassic to Late Cretaceous basins probably rested unconformably on Palaeozoic to Triassic rocks of the New England Fold Belt. Rift volcanism was common on the northern plateau and was probably of Early Cretaceous age. Late Cretaceous extension and breakup were followed by Paleocene drifting, and the Kenn Plateau moved to the northeast, rotated 30° anticlockwise and left space that was filled by Tasman Basin oceanic basalts. During these events, siliciclastic sediments poured into the basins from the continental mainland and from locally eroding highs. After a regional Late Paleocene to Early Eocene unconformity, siliciclastic sedimentation resumed in proximal areas. In deep water, radiolarian chalks were widely deposited until biosiliceous sediment accumulation ended at the regional Late Eocene to Early Oligocene unconformity, and warming surface waters led to accumulation of pure biogenic carbonates. Calcarenite formed in shallow water on the margins of the subsiding plateau from the Middle Eocene onward. Some seismic profiles show Middle to Late Eocene compression related to New Caledonian obduction to the east. Hotspots formed parts of two volcanic chains on or near the plateau as it moved northward: Late Eocene and younger volcanics of the Tasmantid chain in the west, and Late Oligocene and younger volcanics of the Lord Howe chain in the east. As the volcanoes subsided, they were fringed by reefs, some of which have persisted until the present day. Other reefs have not kept up with subsidence, so guyots formed. The plateau has subsided 2000 m or more since breakup and is now subject solely to pelagic carbonate sedimentation.  相似文献   
7.
A recent swath-bathymetry and geophysical survey of the R/V L'Atalante in the Fairway Basin between Australia and New Caledonia allowed to confirm the Cretaceous age of the creation of the basin by continental stretching. This first stage of opening of the Fairway Basin is associated with the deposition of a continuous salt/mud layer feeding today numerous diapirs, some of them piercing the 3 to 4 km thick sedimentary cover and reaching the seafloor. In close link with this salt/mud layer a Bottom Simulating Reflector indicator of gas hydrates level occupies a 70000 km2 surface at about 500 to 600 m-depth beneath the sea floor. The coexistence of both BSR and diapirs suggests a thermogenic better than biogenic origin for the gas hydrates horizon.  相似文献   
8.
N.F. Exon 《Marine Geology》1975,18(4):197-212
In the breaker zone in southeastern Gelting Bay, east of Flensburg in north Germany, a field of up to twenty parallel relatively small-scale offshore sand bars has developed. The bars, which consist of fine- to medium-grained sand derived from till, are flat and asymmetrical and their steeper sides generally face the shore. Crests are as much as 1000 m long; wave-lengths vary from 7 m inshore to 70 m offshore, and heights correspondingly from 5 to 70 cm. The bars are formed by waves driven by northwesterly winds, and are probably destroyed during severe storms and rebuilt as they wane.  相似文献   
9.
We present and discuss a few fission track data, and microstructural observations, from rock samples dredged along the western and southwestern continental margin of Tasmania. The results allow assessing the thermal and tectonic regimes that were active prior to and during the margin creation. The different ages, as provided by fission tracks, and deformational styles, as evidenced from microstructures, are then tentatively correlated with the two main rifting episodes, in Late Jurassic–Cretaceous times and Eocene–Oligocene respectively, deduced from kinematical reconstructions, that have led to the present- day southern margin of Tasmania. To cite this article: M. Sélo et al., C. R. Geoscience 334 (2002) 59–66  相似文献   
10.
The 1994 Tasmante swath-mapping and reflection seismic cruise covered 200 000 km2 of sea floor south and west of Tasmania. The survey provided a wealth of morphological, structural and sedimentological information, in an area of critical importance in reconstructing the break-up of East Gondwana.The west Tasmanian margin consists of a non-depositional continental shelf less than 50 km wide and a sedimented continental slope about 100 km wide. The adjacent 20 km of abyssal plain to the west is heavily sedimented, and beyond that is lightly sedimented Eocene oceanic crust formed as Australia and Antarctica separated. The swath data revealed systems of 100 m-deep downslope canyons and large lower-slope fault-blocks, striking 320° and dipping landward. These continental blocks lie adjacent to the continent ocean boundary (COB) and are up to 2500 m high and have 15°–20° scarps.The South Tasman Rise (STR) is bounded to the west by the Tasman Fracture Zone extending south to Antarctica. Adjacent to the STR, the fracture zone is represented by a scarp up to 2000 m high with slopes of 15–20°. The scarp consists of continental faultblocks dipping landward. Beyond the scarp to the west is a string of sheared parallel highs, and beyond that is lightly sedimented Oligocene oceanic crust 4200–4600 m deep with distinct E-W spreading fabric. The eastern margin of the bathymetric STR trends about 320° and is structurally controlled. The depression between it and the continental East Tasman Plateau (ETP) is heavily sedimented; its western part is underlain by thinned continental crust and its central part by oceanic crust of Late Cretaceous to Early Tertiary age. The southern margin of the STR is formed by N-S transform faults and south-dipping normal faults.The STR is cut into two major terrains by a N-S fracture zone at 146°15E. The western terrain is characterised by rotated basement blocks and intervening basins mostly trending 270°–290°. The eastern terrain is characterised by basement blocks and intervening strike-slip basins trending 300°–340°. Recent dredging of basement rocks suggests that the western terrain has Antarctic affinities, whereas the eastern terrain has Tasmanian affinities.Stretching and slow spreading between Australia and Antarctica was in a NW direction from 130–45 Ma, and fast spreading was in a N-S direction thereafter. The western STR terrain was attached to Antarctica during the early movement, and moved down the west coast of Tasmania along a 320° shear zone, forming the landward-dipping continental blocks along the present COB. The eastern terrain either moved with the western terrain, or was welded to it along the 146°15 E fracture zone in the Early Tertiary. At 45 Ma, fast spreading started in a N-S direction, and after some probable movement along the 146°15E fracture zone, the west and east STR terrains were welded together and became part of Australia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号