首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   3篇
海洋学   2篇
  2020年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 218 毫秒
1
1.
Natural resource management frameworks are important in generating information that promotes the development of appropriate policies and regulation for eff  相似文献   
2.
We present a geochemical and isotopic study that, consistent with observed field relations, suggest Sangmelima late Archaean high-K granite was derived by partial melting of older Archaean TTG. The TTG formations are sodic-trondhjemitic, showing calcic and calc-alkalic trends and are metaluminous to peraluminous. High-K granites in contrast show a potassic calc-alkaline affinity that spans the calcic, calc-alkalic, alkali-calcic and alkalic compositions. The two rock groups (TTG and high-K granites) on the other hand are both ferroan and magnesian. They have a similar degree of fractionation for LREE but a different one for HREE. Nd model ages and Sr/Y ratios define Mesoarchaean and slab-mantle derived magma compositions respectively, with Nb and Ti anomalies indicating a subduction setting for the TTG. Major and trace element in addition to Sr and Nd isotopic compositions support field observations that indicate the derivation of the high-K granitic group from the partial melting of the older TTG equivalent at depth. Geochemical characteristics of the high-K granitic group are therefore inherited features from the TTG protolith and cannot be used for determining their tectonic setting. The heat budget required for TTG partial melting is ascribed to the upwelling of the mantle marked by a doleritic event of identical age as the generated high-K granite melts. The cause of this upwelling is related to linear delamination along mega-shear zones in an intracontinental setting.  相似文献   
3.
The current study was carried out over a period of one year to characterise the coastal migrant fishery of Kenya. The study looked at gears and vessels used, and ownership, demographic factors including ages of the fishers and family sizes, migrant activity and resource conservation at two main fishing villages in Kenya; Vanga and Mayungu in the south and north coasts, straddling at 4.663°S and 39.215°E and 3.214°S and 40.135°E respectively. Further, the fishers were categorised with regard to fishing, gear and vessel operation and trade, and evolution upon entry into the fishery was also assessed in order to define fisher-stake in the fishery for resource management and conservation planning. Structured questionnaires were used to interview the fishers, and data and information recorded from 1018 fishers during the survey. Migrants accounted for over 63% of the fishers in the two study sites, with majority of the fishers lying in the 15–45 year age bracket. Dependence level averages at 4–6 person families per fisher. Entry to the fishery was mainly at seamen level, progressing to fishermen and finally to fish dealers (tajiris), with the latter holding >62% capital in the fishery. Resource management in the fishery was low and only 10% of the fishers were active participants in marine conservation and community beach management issues. Fisher migrations were mainly monsoon season-linked (>58%) although social factors such as family location determined to a great extent the expanse of the migrations. The revival of fisheries cooperatives and active participation in community resource management and conservation groups is envisaged as the key to the sustainability of both the marine resources and the economies associated with this high mobility, cross-border fishery.  相似文献   
4.
Movement within the Earth’s upper crust is commonly accommodated by faults or shear zones, ranging in scale from micro-displacements to regional tectonic lineaments. Since faults are active on different time scales and can be repeatedly reactivated, their displacement chronology is difficult to reconstruct. This study represents a multi-geochronological approach to unravel the evolution of an intracontinental fault zone locality along the Danube Fault, central Europe. At the investigated fault locality, ancient motion has produced a cataclastic deformation zone in which the cataclastic material was subjected to hydrothermal alteration and K-feldspar was almost completely replaced by illite and other phyllosilicates. Five different geochronological techniques (zircon Pb-evaporation, K–Ar and Rb–Sr illite, apatite fission track and fluorite (U-Th)/He) have been applied to explore the temporal fault activity. The upper time limit for initiation of faulting is constrained by the crystallization age of the primary rock type (known as “Kristallgranit”) at 325 ± 7 Ma, whereas the K–Ar and Rb–Sr ages of two illite fractions <2 μm (266–255 Ma) are interpreted to date fluid infiltration events during the final stage of the cataclastic deformation period. During this time, the “Kristallgranit” was already at or near the Earth’s surface as indicated by the sedimentary record and thermal modelling results of apatite fission track data. (U–Th)/He thermochronology of two single fluorite grains from a fluorite–quartz vein within the fault zone yield Cretaceous ages that clearly postdate their Late-Variscan mineralization age. We propose that later reactivation of the fault caused loss of helium in the fluorites. This assertion is supported by geological evidence, i.e. offsets of Jurassic and Cretaceous sediments along the fault and apatite fission track thermal modelling results are consistent with the prevalence of elevated temperatures (50–80°C) in the fault zone during the Cretaceous.  相似文献   
5.
We report a Middle Ordovician metagranitoid from the northern margin of the Anatolide‐Tauride Block, the basement of which is generally characterized by voluminous Latest Proterozoic to Early Cambrian granitoids. The Ordovician metagranitoid forms an ~400‐m‐thick body in the marbles and micaschists of the Tav?anl? Zone. The whole sequence was metamorphosed in the blueschist facies during the Late Cretaceous (c. 80 Ma). Zircons from the metagranitoid give a Middle Ordovician Pb‐Pb evaporation age of 467.0 ± 4.5 Ma interpreted as the age of crystallization of the parent granitic magma. The micaschists underlying the metagranitoid yield Cambro‐Ordovician (530–450 Ma) and Carboniferous (c. 310 Ma) detrital zircon ages indicating that the granitoid is a pre‐ or syn‐metamorphic tectonic slice. The Ordovician metagranitoid represents a remnant of the crystalline basement of the Anatolide‐Tauride Block and provides evidence for Ordovician magmatism at the northern margin of Gondwana. Prismatic Carboniferous detrital zircons in the micaschists indicate that during the Triassic, the northern margin of the Anatolide‐Tauride Block was close to Variscan terranes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号