首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   4篇
  国内免费   4篇
地球物理   6篇
地质学   17篇
海洋学   3篇
天文学   13篇
自然地理   5篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1986年   1篇
  1981年   1篇
排序方式: 共有44条查询结果,搜索用时 46 毫秒
1.
Images from satellite platforms are a valid aid in order to obtain distributed information about hydrological surface states and parameters needed in calibration and validation of the water balance and flood forecasting. Remotely sensed data are easily available on large areas and with a frequency compatible with land cover changes. In this paper, remotely sensed images from different types of sensor have been utilized as a support to the calibration of the distributed hydrological model MOBIDIC, currently used in the experimental system of flood forecasting of the Arno River Basin Authority. Six radar images from ERS‐2 synthetic aperture radar (SAR) sensors (three for summer 2002 and three for spring–summer 2003) have been utilized and a relationship between soil saturation indexes and backscatter coefficient from SAR images has been investigated. Analysis has been performed only on pixels with meagre or no vegetation cover, in order to legitimize the assumption that water content of the soil is the main variable that influences the backscatter coefficient. Such pixels have been obtained by considering vegetation indexes (NDVI) and land cover maps produced by optical sensors (Landsat‐ETM). In order to calibrate the soil moisture model based on information provided by SAR images, an optimization algorithm has been utilized to minimize the regression error between saturation indexes from model and SAR data and error between measured and modelled discharge flows. Utilizing this procedure, model parameters that rule soil moisture fluxes have been calibrated, obtaining not only a good match with remotely sensed data, but also an enhancement of model performance in flow prediction with respect to a previous calibration with river discharge data only. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
2.
Research was conducted to assess the impact of oiling on fresh-marsh plant communities and to test the efficacy of techniques that may be used to enhance the bioremediation of crude oil spills in these environments while minimizing secondary anthropogenic impacts. To emulate field conditions, a mesocosm facility was used that houses 120 mesocosm vessels, each of 200-1 capacity. A five-way factorial treatment arrangement was used that included two substrates (inorganic, organic), two nutrient regimes (fertilized, not fertilized), two aeration levels (substrate aeration, no aeration), three oiling concentrations (0-, 5-, 10-1 m(-2) of South Louisiana Sweet Crude oil), and four vascular plant species (Alternanthera philoxeroides, Panicum hemitomon, Phragmites australis, Sagittaria lancifolia, and an unplanted control). Under the 5- and 10-1 m(-2) oiling concentrations, S. lancifolia displayed a short-term response of increased productivity, whereas P. hemitomon had the highest biomass production and photosynthetic rates at the end of the 18-month experiment. Overall plant growth and productivity, as well as oil degradation, were significantly higher in the inorganic substrate, indicating that biodegradation of oil spills in organic substrates may require a longer time period. Time-released fertilizer also stimulated plant productivity and resulted in higher soil respiratory quotients, suggestive of greater microbial activity, particularly in aerated mesocosms. The amount of oil remaining after 18 months was lowest in aerated and fertilized mesocosms containing either P. hemitomon or S. lancifolia and a substrate of low organic matter content.  相似文献   
3.
Despite increased application of subsurface datasets below the limits of seismic resolution, reconstructing near‐surface deformation of shallow key stratigraphic markers beneath modern alluvial and coastal plains through sediment core analysis has received little attention. Highly resolved stratigraphy of Upper Pleistocene to Holocene (Marine Isotope Stage 5e to Marine Isotope Stage 1) alluvial, deltaic and coastal depositional systems across the southern Po Plain, down to 150 m depth, provides an unambiguous documentation on the deformation of previously flat‐lying strata that goes back in time beyond the limits of morphological, historical and palaeoseismic records. Five prominent key horizons, accurately selected on the basis of their sedimentological characteristics and typified for their fossil content, were used as highly effective stratigraphic markers (M1 to M5) that can be tracked for tens of kilometres across the basin. A facies‐controlled approach tied to a robust chronology (102 radiocarbon dates) reveals considerable deformation of laterally extensive nearshore (M1), continental (M2 and M3) and lagoon (M4 and M5) marker beds originally deposited in a horizontal position (M1, M4 and M5). The areas where antiformal geometries are best observed are remarkably coincident with the axes of buried ramp anticlines, across which new seismic images reveal substantially warped stratal geometries of Lower Pleistocene strata. The striking spatial coincidence of fold crests with the epicentres of historic and instrumental seismicity suggests that deformation of marker beds M1 to M5 might reflect, in part at least, syntectonically generated relief and, thus, active tectonism. Precise identification and lateral tracing of chronologically constrained stratigraphic markers in the 14C time window through combined sedimentological and palaeoecological data may delineate late Quaternary subsurface stratigraphic architecture at an unprecedented level of detail, outlining cryptic stratal geometries at the sub‐seismic scale. This approach is highly reproducible in tectonically active Quaternary depositional systems and can help to assess patterns of active deformation in the subsurface of modern alluvial and coastal plains worldwide.  相似文献   
4.
5.
新疆阿尔泰克因布拉克铜锌矿床地质特征及成矿作用   总被引:4,自引:1,他引:3  
克因布拉克中型铜锌矿床赋存于早二叠世花岗岩外接触带的上志留统-下泥盆统康布铁堡组黑云石英片岩、变质石英砂岩中。矿床的形成经历了夕卡岩期、热液期和表生期,铜锌矿主要形成于热液期。矿石中石英和方解石流体包裹体划分为H_2O-NaCl型和H_2O-CO_2(±CH_4/N_2)-NaCl型。成矿温度变化于146~448℃,在170℃、270℃和350℃出现峰值;流体盐度变化于0.2%~46.9%NaCl_(eq),峰值为1.5%NaCl_(eq)和5.5%NaCl_(eq);流体的密度0.55~1.19g/cm~3。硫化物的δ~(34)S集中变化于-8.4‰~1.9‰,峰值为0‰,表明硫来自岩浆。石英和方解石δD_(SMOW)介于-130‰~-79‰,δ~(18)O_(SMOW)值介于8.0‰~11.6‰,δ~(18)O_(H2O)值为-1.7‰~4.43‰,表明成矿流体主要是岩浆水,混合大气降水。方解石中δ~(13)C_(PDB)变化于-5.3‰~-1.1‰,暗示碳来自花岗质岩浆。成矿时代为早中二叠世,成矿作用与花岗质岩浆期后的热液活动有关。  相似文献   
6.
7.
The soil factor is crucial in controlling and properly modeling the initiation and development of ephemeral gullies (EGs). Usually, EG initiation has been related to various soil properties (i.e. sealing, critical shear stress, moisture, texture, etc.); meanwhile, the total growth of each EG (erosion rate) has been linked with proper soil erodibility. But, despite the studies to determine the influence of soil erodibility on (ephemeral) gully erosion, a universal approach is still lacking. This is due to the complex relationship and interactions between soil properties and the erosive process. A feasible soil characterization of EG erosion prediction on a large scale should be based on simple, quick and inexpensive tests to perform. The objective of this study was to identify and assess the soil properties – easily and quickly to determine – which best reflect soil erodibility on EG erosion. Forty‐nine different physical–chemical soil properties that may participate in establishing soil erodibility were determined on agricultural soils affected by the formation of EGs in Spain and Italy. Experiments were conducted in the laboratory and in the field (in the vicinity of the erosion paths). Because of its importance in controlling EG erosion, five variables related to antecedent moisture prior to the event that generated the gullies and two properties related to landscape topography were obtained for each situation. The most relevant variables were detected using multivariate analysis. The results defined 13 key variables: water content before the initiation of EGs, organic matter content, cation exchange capacity, relative sealing index, two granulometric and organic matter indices, seal permeability, aggregates stability (three index), crust penetration resistance, shear strength and an erodibility index obtained from the Jet Test erosion apparatus. The latter is proposed as a useful technique to evaluate and predict soil loss caused by EG erosion. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   
8.
9.
Two end‐member models have been proposed for the Paleogene Andean foreland: a simple W‐E migrating foreland model and a broken‐foreland model. We present new stratigraphic, sedimentological and structural data from the Paleogene Quebrada de los Colorados (QLC) Formation, in the Eastern Cordillera, with which to test these two different models. Basin‐wide unconformities, growthstrata and changes in provenance indicate deposition of the QLC Formation in a tectonically active basin. Both west‐ and east‐vergent structures, rooted in the basement, controlled the deposition and distribution of the QLC Formation from the Middle Eocene to the Early Miocene. The provenance analysis indicates that the main source areas were basement blocks, like the Paleozoic Oire Eruptive Complex, uplifted during Paleogene shortening, and that delimits the eastern boundary of the present‐day intraorogenic Puna plateau. A comparison of the QLC sedimentary basin‐fill pattern with those of adjacent Paleogene basins in the Puna plateau and in the Santa Bárbara System highlights the presence of discrete depozones. These reflect the early compartmentalization of the foreland, rather than a stepwise advance of the deformation front of a thrust belt. The early Tertiary foreland of the southern central Andes is represented by a ca. 250‐km‐wide area comprising several deformation zones (Arizaro, Macón, Copalayo and Calchaquí) in which doubly vergent or asymmetric structures, rooted in the basement, were generated. Hence, classical foreland model is difficult to apply in this Paleogene basin; and our data and interpretation agree with a broken‐foreland model.  相似文献   
10.
Depression storage (DS) is the maximum storage of precipitation and runoff in the soil surface at a given slope. The DS is determined by soil roughness that in agricultural soils is largely affected by tillage. The direct measurement of DS is not straightforward because of the natural permeability of the soil. Therefore, DS has generally been estimated from 2D/3D empirical relationships and numerical algorithms based on roughness indexes and height measurements of the soil surface, respectively. The objective of this work was to evaluate the performance of some 2D models for DS, using direct and reliable measurements of DS in an agricultural soil as reference values. The study was carried out in experimental microplots where DS was measured in six situations resulting from the combination of three types of tillage carried out parallel and perpendicular to the main slope. Those data were used as reference to evaluate four empirical models and a numerical method. Longitudinal altitudinal profiles of the relief were obtained by a laser profilometer. Infiltration measurements were carried out before and after tillage. The DS was largely affected by tillage and its direction. Highest values of DS are found on rougher surfaces mainly when macroforms cut off the dominant slope. The empirical models had a limited performance while the numerical method was the most effective, even so, with an important variability. In addition, a correct hydrological management should take into account that each type of soil tillage affects infiltration rate differently. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号