首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   14篇
  国内免费   2篇
大气科学   6篇
地球物理   66篇
地质学   144篇
海洋学   23篇
天文学   67篇
综合类   2篇
自然地理   18篇
  2023年   2篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   4篇
  2015年   10篇
  2014年   5篇
  2013年   15篇
  2012年   4篇
  2011年   7篇
  2010年   7篇
  2009年   14篇
  2008年   8篇
  2007年   13篇
  2006年   25篇
  2005年   10篇
  2004年   11篇
  2003年   7篇
  2002年   11篇
  2001年   3篇
  2000年   7篇
  1999年   6篇
  1998年   9篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   7篇
  1993年   3篇
  1992年   9篇
  1991年   10篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1984年   3篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1973年   4篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
  1965年   2篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
1.
We report the first results of an observational programme designed to determine the luminosity density of high-redshift quasars     quasars) using deep multicolour CCD data. We report the discovery and spectra of three     high-redshift     quasars, including one with     . At     , this is the fourth highest redshift quasar currently published. Using these preliminary results we derive an estimate of the         quasar space density in the redshift range     of     . When completed, the survey will provide a firm constraint on the contribution to the ionizing UV background in the redshift range     from quasars by determining the faint-end slope of the quasar luminosity function. The survey uses imaging data taken with the 2.5-m Isaac Newton Telescope as part of the Public Isaac Newton Group Wide Field Survey (WFS). This initial sample of objects is taken from two fields of effective area ∼12.5 deg2 from the final ∼100 deg2.  相似文献   
2.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
3.
The gray crystalline hematite at Meridiani Planum first discovered by the Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) instrument occurs as spherules that have been interpreted as concretions. Analysis of the TES and mini-TES spectra shows that no 390 cm−1 feature is present in the characteristic martian hematite spectrum. Here, we incorporate the mid-IR optical constants of hematite into a simple Fresnel reflectance model to understand the effect of emission angle and crystal morphology on the presence or absence of the 390 cm−1 feature in an IR hematite spectrum. Based on the results we offer two models for the internal structure of the martian hematite spherules.  相似文献   
4.
Water surface profiles and horizontal and vertical water particle velocity components have been measured to investigate the properties of intermediate depth waves generated in the laboratory. The data has been compared with linear wave theory. It was found that linear theory predicted the attenuation of velocity field with depth successfully and that it overestimates both components of velocity slightly.  相似文献   
5.
 We used transmission electron microscopy (TEM) and scanning electron microscopy (SEM) to study magmatic crystals in the Ben Lomond rhyolite lava dome, Taupo Volcanic Center, New Zealand. Using TEM and SEM to investigate the size distributions of these crystals, we identified three size populations: microphenocrysts (>1.2 μm wide), microlites (>0.6 μm wide), and smaller crystals (<0.6 μm wide) which we term "nanolites". The predominant mineral phases of the microlites and nanolites are augites, pigeonites, and hypersthenes. The compositions and microstructures within these pyroxenes indicate disequilibrium crystallization at approximately 850–900  °C and undercoolings as high as 300  °C from equilibrium crystallization temperatures. Complex microstructures resulting from subsolidus reactions in augite and pigeonite are consistent with moderate cooling rates within the upper obsidian layer of the Ben Lomond rhyolite dome. This study demonstrates the existence of sub-micron magmatic crystals in a rhyolite and illustrates the potential of TEM to provide unique information about the crystallization and cooling histories of glassy volcanic rocks. Received: May 8, 1995 / Accepted: November 27, 1995  相似文献   
6.
To study the crystal chemistry of bernalite, Fe(OH)3, and the nature of the octahedral Fe3+ environment, Mössbauer spectra were recorded from 80 to 350 K, optical spectra were recorded at room temperature and a sample was studied using transmission electron microscopy. The Mössbauer spectrum of bernalite consists of a single six-line magnetic spectrum at 80 K. A broadened six-line magnetic spectrum with significantly less intensity is observed at higher temperatures, and is attributed to a small fraction of bernalite occurring as small particles. The variation of hyperfine magnetic field data for bulk bernalite with temperature is well described by the Weiss molecular field model with parameters of H 0 = 55.7±0.3 T and T N = 427±5K. The centre shift data were fitted to the Debye model with parameters 0=0.482±0.005 mm/s (relative to -Fe) and M=492±30 K. The quadrupole shift is near zero at 300 K, and does not vary significantly with temperature. Absorption spectra in the visible and near infrared range show three crystal field bands of Fe3+ at 11 300, 16000 and 23 200 cm-1, giving a crystal field splitting of 14 570 cm-1 and Racah parameters of B=629 cm-1 and C=3381 cm-1. Infrared reflection spectra show two distinct OH-stretching frequencies, which could correspond to two structurally different types of OH groups. A band was also observed at 2250 cm-1, suggesting the presence of molecular CO2 in the large cation site. Analytical transmission electron microscopy indicates that Si occurs within the bernalite structure as well as along domain boundaries. Electron diffraction and imaging show that bernalite is polysynthetically twinned along {100} planes with twin domains ranging from 3 to 20 nm in thickness. Results are discussed with respect to the nature of the octahedral Fe3+ site, and compared with values for other iron oxides and hydroxides.  相似文献   
7.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   
8.
We report new chemical and isotopic data from 26 volcanic and geothermal gases, vapor condensates, and thermal water samples, collected along the Nicaraguan volcanic front. The samples were analyzed for chemical abundances and stable isotope compositions, with a focus on nitrogen abundances and isotope ratios. These data are used to evaluate samples for volatile contributions from magma, air, air-saturated water, and the crust. Samples devoid of crustal contamination (based upon He isotope composition) but slightly contaminated by air or air-saturated water are corrected using N2/Ar ratios in order to obtain primary magmatic values, composed of contributions from upper mantle and subducted hemipelagic sediment on the down-going plate. Using a mantle endmember with δ15N = −5‰ and N2/He = 100 and a subducted sediment component with δ15N = +7‰ and N2/He = 10,500, the average sediment contribution to Nicaraguan volcanic and geothermal gases was determined to be 71%. Most of the gases were dominated by sediment-derived nitrogen, but gas from Volcán Mombacho, the southernmost sampling location, had a mantle signature (46% from subducted sediment, or 54% from the mantle) and an affinity with mantle-dominated gases discharging from Costa Rica localities to the south. High CO2/N2 exc. ratios (N2 exc. is the N2 abundance corrected for contributions from air) in the south are similar to those in Costa Rica, and reflect the predominant mantle wedge input, whereas low ratios in the north indicate contribution by altered oceanic crust and/or preferential release of nitrogen over carbon from the subducting slab. Sediment-derived nitrogen fluxes at the Nicaraguan volcanic front, estimated by three methods, are 7.8 × 108 mol N/a from 3He flux, 6.9 × 108 mol/a from SO2 flux, and 2.1 × 108 and 1.3 × 109 mol/a from CO2 fluxes calculated from 3He and SO2, respectively. These flux results are higher than previous estimates for Central America, reflecting the high sediment-derived volatile contribution and the high nitrogen content of geothermal and volcanic gases in Nicaragua. The fluxes are also similar to but higher than estimated hemipelagic nitrogen inputs at the trench, suggesting addition of N from altered oceanic basement is needed to satisfy these flux estimates. The similarity of the calculated input of N via the trench to our calculated outputs suggests that little or none of the subducted nitrogen is being recycled into the deeper mantle, and that it is, instead, returned to the surface via arc volcanism.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号