首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   3篇
地球物理   4篇
地质学   9篇
自然地理   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2007年   3篇
  1986年   2篇
  1982年   2篇
  1974年   1篇
  1969年   1篇
排序方式: 共有14条查询结果,搜索用时 922 毫秒
1.
It is widely recognised that the acquisition of high‐resolution palaeoclimate records from southern mid‐latitude sites is essential for establishing a coherent picture of inter‐hemispheric climate change and for better understanding of the role of Antarctic climate dynamics in the global climate system. New Zealand is considered to be a sensitive monitor of climate change because it is one of a few sizeable landmasses in the Southern Hemisphere westerly circulation zone, a critical transition zone between subtropical and Antarctic influences. New Zealand has mountainous axial ranges that amplify the climate signals and, consequently, the environmental gradients are highly sensitive to subtle changes in atmospheric and oceanic conditions. Since 1995, INTIMATE has, through a series of international workshops, sought ways to improve procedures for establishing the precise ages of climate events, and to correlate them with high precision, for the last 30 000 calendar years. The NZ‐INTIMATE project commenced in late 2003, and has involved virtually the entire New Zealand palaeoclimate community. Its aim is to develop an event stratigraphy for the New Zealand region over the past 30 000 years, and to reconcile these events against the established climatostratigraphy of the last glacial cycle which has largely been developed from Northern Hemisphere records (e.g. Last Glacial Maximum (LGM), Termination I, Younger Dryas). An initial outcome of NZ‐INTIMATE has been the identification of a series of well‐dated, high‐resolution onshore and offshore proxy records from a variety of latitudes and elevations on a common calendar timescale from 30 000 cal. yr BP to the present day. High‐resolution records for the last glacial coldest period (LGCP) (including the LGM sensu stricto) and last glacial–interglacial transition (LGIT) from Auckland maars, Kaipo and Otamangakau wetlands on eastern and central North Island, marine core MD97‐2121 east of southern North Island, speleothems on northwest South Island, Okarito wetland on southwestern South Island, are presented. Discontinuous (fragmentary) records comprising compilations of glacial sequences, fluvial sequences, loess accumulation, and aeolian quartz accumulation in an andesitic terrain are described. Comparisons with ice‐core records from Antarctica (EPICA Dome C) and Greenland (GISP2) are discussed. A major advantage immediately evident from these records apart from the speleothem record, is that they are linked precisely by one or more tephra layers. Based on these New Zealand terrestrial and marine records, a reasonably coherent, regionally applicable, sequence of climatically linked stratigraphic events over the past 30 000 cal. yr is emerging. Three major climate events are recognised: (1) LGCP beginning at ca. 28 000 cal. yr BP, ending at Termination I, ca. 18 000 cal. yr BP, and including a warmer and more variable phase between ca. 27 000 and 21 000 cal. yr BP, (2) LGIT between ca. 18 000 and 11 600 cal. yr BP, including a Lateglacial warm period from ca. 14 800 to 13 500 cal. yr BP and a Lateglacial climate reversal between ca. 13 500 and 11 600 cal. yr BP, and (3) Holocene interglacial conditions, with two phases of greatest warmth between ca. 11 600 and 10 800 cal. yr BP and from ca. 6 800 to 6 500 cal. yr BP. Some key boundaries coincide with volcanic tephras. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
2.
The Afro-Arabian dome includes the elevated continental regions enclosing the Red Sea, Gulf of Aden, and the Ethiopian rift system, and extends northwards as far as Jordan. It is more than an order of magnitude larger than other African uplifts. Both the structures and the igneous rocks of the dome appear to be products of the superimposition of two, perhaps three, semi-independent generating systems, initiated at different times but all still active. A strain pattern dominated by NW-trending basins and rifts first became established early in the Cretaceous. By the end of the Oligocene, much of the extensional strain had been taken up along the Red Sea and Gulf of Aden axes, which subsequently developed into an ocean. Palaeogene “trap” volcanism of mildly alkaline to transitional character was related to this horizontal extension rather than to doming. Further west, the East Sahara swell has a history of intermittent alkaline volcanicity which began in the Mesozoic and was independent of magmatism in the Afro-Arabian dome. Volcanicity specifically related to doming began in the Miocene along a N-S zone of uplift extending from Ethiopia to Syria. This elongated swell forms the northern termination of the East African system of domes and rifts, characterized by episodic vertical uplift but very little extension. Superimposition of epeirogenic uplift upon structures formed by horizontal extension took place in the Neogene. Volcanicity related to vertical tectonics is mildly alkaline in character, whereas transitional and tholeiitic magmas are found along the spreading axes.  相似文献   
3.
4.
The 14 February, or Valentine's Day, 2016 earthquake located offshore of Christchurch produced a new generation of liquefaction in the coastal environment of Christchurch, an environment of recurrent liquefaction during the 2010–2011 Canterbury Earthquake Sequence. The Valentine's Day earthquake occurred while trenches were open at a site in the coastal environment for studying the 2010–2011 liquefaction features. Observations in the 2016 trenches provided insights into the formation of a suite of surface and subsurface liquefaction features characteristic of the dune deposits, related to the persistent shallow water table, well‐sorted sands within the liquefiable layer and the soil above. Given these conducive conditions, there is a high potential that all earthquakes capable of inducing liquefaction may have been recorded during formation of the dunes near Christchurch. However, overprinting by subsequent generations of liquefaction features may be common and present challenges in unravelling the event history.  相似文献   
5.
6.
Six new analyses of young basaltic rocks from the Bayuda field show the predominant rock types to be strongly undersaturated basanites and nepheline trachybasalts. Both types are believed to represent magmas of deep-seated origin. Similar rocks are widely distributed in north-east Africa but mildly alkaline to tholeiitic basalts were erupted along the eastern margin of the continent in early and late Cainozoic times, whereas along the Tripoli-Tibesti zone to the west mildly alkaline basalts were probably confined to the early Tertiary. The Tripoli-Tibesti zone was one of uplift and strongly tensional tectonics in the late Mesozoic and early Cainozoic, and at this time may have been a line of potential lithospheric rifting, but a period of quiescence followed and resurgence of activity in the late Cainozoic produced weaker tensional structures and more strongly alkaline basic magmas. The region between these two main zones of activity was characterized throughout by intermittent alkaline volcanicity and weak tectonism. Neverthless, fracture zones which apparently controlled the volcanicity are beginning to be recognized in this area. It is argued that African volcanic activity is related to linear, rather than circumscribed, areas of mantle activity. Possible connections with epeirogenic movements within the Alpine orogenic belt appear to have been neglected in the debate on the causes of African igneous activity.  相似文献   
7.
A cluster of well-preserved recent volcanoes in the northern Bayuda Desert make up a more or less continuous field some 520 km2 in area surrounded by a number of isolated centres of eruption. The volcanoes are numerous but small; up to 400 m in height and 0.35 km2 in volume. Most of them are simple composite volcanoes with a pyroclastic cone skirted by a small lava field erupted from the same vent after explosive eruptions had ceased. In a few instances, however, the cone was eviscerated by more violent eruptions, leaving a deep explosion crater. The lavas are all nepheline-normative alkali basalts and contain a variety of xenocrysts and xenoliths from at least three different sources. The distribution of the recent volcanoes was partly controlled by large granitic ring-intrusions of the Basement Complex country rocks. These intrusions belong to the Younger Granite association of late Precambrian or Lower Palaeozoic age and represent a volcanic-intrusive episode widespread in northern Africa. The complexes are composed of cale-alkaline and peralkaline granites and syenites and a related plexus of dyke swarms.  相似文献   
8.
The Mesozoic-Cainozoic volcanism of NE Africa and Arabia is described in terms of four major magmatic provinces. These are dominantly basaltic and vary in general composition from strongly alkaline to tholeiitic, with some overlap between provinces. Most, but not all, of this volcanism has taken place within the confines of the Afro-Arabian dome and its attendant rifts, but the magmatism is not explicable in terms of a ‘mantle plume’ beneath Afar because such a plume explains neither the spatial nor temporal distribution of volcanicity. Instead, I propose a multi-stage model in which basaltic magmas of transitional composition were generated in Paleogene time as a response to regional extension. With subsequent evolution of the Red Sea and Gulf of Aden into proto-oceans, these magmas took on the character of oceanic tholeiites. In the Neogene, alkalic activity related to epeirogenic doming was superimposed on this extension-related volcanism. A third, independent magma-generating mechanism appears to have operated NW of the Afro-Arabian dome, where small volumes of alkaline basalt magma have been erupted intermittently since early in the Cretaceous. This activity may result from periodic tapping of deep asthenosphere by tensile fracturing and upwarping of the northward-drifting African plate.  相似文献   
9.
OSL, radiocarbon dating of pedogenic carbonate and tephrochronology have been used in an attempt to provide a detailed and reliable chronology for Birdlings Flat loess, a thick, proximal loess found on the lower flanks of Banks Peninsula, Canterbury, New Zealand. In a ca 15 m thick section at Ahuriri Quarry the Kawakawa tephra isochron of 26,500 cal. yr BP is identified at a depth of ca. 1.35 m on the basis of glass counting and electron microprobe fingerprinting. Radiocarbon ages of filamentous or root pseudomorph carbonate increase down section from ca. 10,000 cal. yr BP at 2.80 m to ca. 30,000 14C yr BP at 10.90 m. Ages from carbonate lining cracks are often out of sequence, indicating deep percolation by bypass flow down preferential flow paths. OSL ages show reversals with respect to each other, carbonate radiocarbon ages, and with the position and accepted age of Kawakawa tephra. Coincident radiocarbon and OSL ages at 3.85 m depth indicate that OSL ages are underestimates by at least 20%. Before OSL can be deemed a high accuracy dating method of the quatzo-feldspathic loess of South Island, New Zealand, more research into the causes of age underestimation and age reversals must be carried out. The last major episode of loess accumulation on the flanks of Banks Peninsula in Canterbury began before ca. 30,000 14C yr BP (ca. 35,000 cal. yr BP) and possibly before 43,000 yr based on OSL.  相似文献   
10.
Numerous rockfalls released during the 2010–2011 Canterbury earthquake sequence affected vital road sections for local commuters. We quantified rockfall fatality risk on two main routes by adapting a risk approach for roads originally developed for snow avalanche risk. We present results of the collective and individual fatality risks for traffic flow and waiting traffic. Waiting traffic scenarios particularly address the critical spatial‐temporal dynamics of risk, which should be acknowledged in operational risk management. Comparing our results with other risks commonly experienced in New Zealand indicates that local rockfall risk is close to tolerability thresholds and likely exceeds acceptable risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号