首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   6篇
测绘学   7篇
大气科学   13篇
地球物理   14篇
地质学   52篇
海洋学   1篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   21篇
  2013年   8篇
  2012年   3篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   3篇
  2007年   10篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2000年   1篇
  1997年   2篇
  1994年   1篇
  1993年   2篇
  1990年   1篇
  1989年   3篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1978年   1篇
  1974年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
The imbalance between incoming and outgoing salt causes salinization of soils and sub-soils that result in increasing the salinity of stream-flows and agriculture land. This salinization is a serious environmental hazard particularly in semi-arid and arid lands. In order to estimate the magnitude of the hazard posed by salinity, it is important to understand and identify the processes that control salt movement from the soil surface through the root zone to the ground water and stream flows. In the present study, Malaprabha sub-basin (up to dam site) has been selected which has two distinct climatic zones, sub-humid (upstream of Khanapur) and semi-arid region (downstream of Khanapur). In the upstream, both surface and ground waters are used for irrigation, whereas in the downstream mostly groundwater is used. Both soils and ground waters are more saline in downstream parts of the study area. In this study we characterized the soil salinity and groundwater quality in both areas. An attempt is also made to model the distribution of potassium concentration in the soil profile in response to varying irrigation conditions using the SWIM (Soil-Water Infiltration and Movement) model. Fair agreement was obtained between predicted and measured results indicating the applicability of the model.  相似文献   
2.
The present work aims at introducing a basic theory, implementing methodology and algorithms for 3‐D modeling, and visualizing a geologic model using the Open Source Free GIS GRASS environment. A 3‐D geologic model is constructed from the boundary surfaces of geologic units and the logical model of geologic structure. The algorithms for construction and visualization of the proposed model are based on the geologic function g . The geologic function g assigns a unique geologic unit to every point in the objective 3‐D space. The boundary surface that divides the objective space into two subspaces is estimated using data from field survey. The logical model showing the hierarchical relationship between these boundary surfaces and geologic units can be automatically generated based on the stratigraphic sequence and knowledge of geologic structures. Based on these algorithms, a 3‐D geologic model can be constructed virtually in the GRASS GIS. Applying this model, various geologic surfaces and section models can be visualized in the GRASS GIS environment. “Nviz” was used for dynamic visualization of geologic cross‐sections and generation of animated image sequences. Further, the described algorithms and methods are applied and an online 3‐D geologic modeling system is developed.  相似文献   
3.
Land surface temperature (LST) is an important aspect in global to regional change studies, for control of climate change and balancing of high temperature. Urbanization is one of the influencing factors increasing land surface and atmospheric temperature, by the emission of greenhouse gases (e.g. CO2, NO and methane). In the present study, LST was derived from Landsat-8 of multitemporal data sets to analyse the spatial structure of the urban thermal environment in relation to the urban surface characteristics and land use–land cover (LULC). LST is influenced by the greenhouse gases i.e. CO2 plays an important role in increasing the earth’s surface temperature. In order to provide the evidence of influence of CO2 on LST, the relationship between LST, air temperature and CO2 was analysed. Landsat-8 satellite has two thermal bands, 10 and 11. These bands were used to accurately to calculate the temperature over the study area. Results showed that the strength of correlation between ground monitoring data and satellite data was high. Based on correlation values of each month April (R2 = 0.994), May (R2 = 0.297) and June (R2 = 0.934), observed results show that band 10 was significantly correlating with air temperature. Relationship between LST and CO2 levels were obtained from linear regression analysis. band 11 was correlating significantly with CO2 values in each of the months April (R2 = 0.217), May (R2 = 0.914) and June, (R2 = 0.934), because band 11 is closer to the 15-micron band of CO2. From the results, it was observed that band 10 can be used for calculating air temperature and band 11 can be used for estimation of greenhouse gases.  相似文献   
4.
Developing nations are abandoned against tropical cyclones because of climatic changeability; the atmosphere is probably going to expand the recurrence and extent of some outrageous climate and calamity occasions. Urban areas and towns arranged along the coastline front belt in Visakhapatnam region experienced serious harm because of Hudhud cyclone, which happened on October 12, 2014. The fundamental motivation behind this exploration was to distinguish the vegetation damage in Visakhapatnam and neighbouring towns. In this analysis, Landsat-8 satellite datasets procured prior and then afterward the cyclone have been utilized; image processing techniques have been completed to evaluate the progressions of pre- and post-disaster condition. Vegetation index strategy was utilized to assess the damage to vegetation. Arrangement results and land utilize land cover change investigation demonstrate that 13.25% of agriculture Kharif and 31.1% of vegetation was damaged. Normalized difference vegetation index (NDVI) maps were produced for the previously, then after the cyclone circumstance, and vegetation biomass damage was evaluated in Visakhapatnam and Bhimunipatanam. General loss of vegetation in both the spots was 30.67 and 43.37 km2. The result of this review can be utilized by decision makers for the post-disaster support for rebuilding of influenced regions.  相似文献   
5.
Sustainable management of groundwater resources is critical for viable development of semi-arid regions. Refugio County, TX, is predominantly a rural community that is in close proximity to two large urban areas of Corpus Christi and San Antonio. Large-scale water supply projects are being planned to export surplus water available in Refugio County to nearby growing cities. Being a coastal county with several sensitive bays and estuaries, these projects have caused concerns with regard to decreases in freshwater inflows to coastal bodies and raised the possibility of saltwater intrusion. A simulation model characterizing groundwater flow in the shallower unconfined and the deeper semi-confined formations of the Gulf coast aquifer was calibrated and evaluated. The model results were used in conjunction with a mathematical programming scheme to estimate maximum available groundwater in the county. Stakeholder concerns were incorporated as constraints, which included prevention of saltwater intrusion in the aquifer, limiting the amount of allowable drawdown in shallow aquifers, as well as maintaining current flow gradients especially near baseflow-dependent streams and rivers. For the conditions assumed in this study, the model results indicate that roughly 4.93 × 107 m3 of water can be extracted in a typical year. The management model was noted to be very sensitive to the imposed saltwater intrusion constraint.  相似文献   
6.
7.
The geological complexities of banded iron formation (BIF) and associated iron ores of Jilling-Langalata iron ore deposits, Singhbhum-North Orissa Craton, belonging to Iron Ore Group (IOG) eastern India have been studied in detail along with the geochemical evaluation of different iron ores. The geochemical and mineralogical characterization suggests that the massive, hard laminated, soft laminated ore and blue dust had a genetic lineage from BIFs aided with certain input from hydrothermal activity. The PAAS normalized REE pattern of Jilling BIF striking positive Eu anomaly, resembling those of modern hydrothermal solutions from mid-oceanic ridge (MOR). Major part of the iron could have been added to the bottom sea water by hydrothermal solutions derived from hydrothermally active anoxic marine environments. The ubiquitous presence of intercalated tuffaceous shales indicates the volcanic signature in BIF. Mineralogical studies reveal that magnetite was the principal iron oxide mineral, whose depositional history is preserved in BHJ, where it remains in the form of martite and the platy hematite is mainly the product of martite. The different types of iron ores are intricately related with the BHJ. Removal of silica from BIF and successive precipitation of iron by hydrothermal fluids of possible meteoric origin resulted in the formation of martite-goethite ore. The hard laminated ore has been formed in the second phase of supergene processes, where the deep burial upgrades the hydrous iron oxides to hematite. The massive ore is syngenetic in origin with BHJ. Soft laminated ores and biscuity ores were formed where further precipitation of iron was partial or absent.  相似文献   
8.
Is the prospect of possible climate change relevant to water resources decisions being made today? And, if so, how ought that prospect be considered? These questions can be addressed by decision analysis, which we apply to two investments in the Great Lakes region: a regulatory structure for Lake Erie, and breakwaters to protect Presque Isle State Park, PA. These two decisions have the elements that potentially make climate change relevant: long lived, "one shot" investments; benefits or costs that are affected by climate-influenced variables; and irreversibilities. The decision analyses include the option of waiting to obtain better information, using Bayesian analysis to detect whether climate change has altered water supplies. The analyses find that beliefs about climate change can indeed affect optimal decisions. Furthermore, ignoring the possibility of climate change can lead to significant opportunity losses—in the cases here, as much as 10% or more of the construction cost. Yet the consequences of climate uncertainty for Great Lakes management do not appear to be qualitatively different from those of other risks, and thus do not deserve different treatment. The methods of sensitivity analysis, scenario planning, and decision analysis, all of which are encouraged under US federal guidelines for water planning, are applicable. We recommend increased use of decision trees and Bayesian analysis to consider not only climate change risks, but also other important social and environmental uncertainties.  相似文献   
9.
Land cover has been increasingly recognized as an important factor affecting hydrologic processes at the basin and regional level. Therefore, improved understanding of how land cover change affects hydrologic systems is needed for better management of water resources. The objective of this study is to investigate the effects of land cover change on the duration and severity of high and low flows by using the Soil Water Assessment Tool model, Bayesian model averaging and copulas. Two basins dominated by different land cover in the Ohio River basin are used as study area in this study. Two historic land covers from the 1950s and 1990s are considered as input to the Soil Water Assessment Tool model, thereby investigating the hydrologic high and low flow response of different land cover conditions of these two basins. The relationships between the duration and severity of both low and high flow are defined by applying the copula method; changes in the frequency of the duration and severity are investigated. The results show that land cover changes affect both the duration and severity of both high and low flows. An increase in forest area leads to a decrease in the duration and severity during both high and low flows, but its impact is highest during extreme flows. The results also show that the land cover changes have had significant influences on changes in the joint return periods of duration and severity of low and high flows. While this study sheds light on the role of land cover change on severity and duration of high and low flow conditions, more studies using various land cover conditions and climate types are required in order to draw more reliable conclusions in the future. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
10.
Managing nonpoint-source (NPS) pollution of groundwater systems is a significant challenge because of the heterogeneous nature of the subsurface, high costs of data collection, and the multitude of scales involved. In this study, we assessed a particularly complex NPS groundwater pollution problem in Michigan, namely, the salinization of shallow aquifer systems due to natural upwelling of deep brines. We applied a system-based approach to characterize, across multiple scales, the integrated groundwater quantity–quality dynamics associated with the brine upwelling process, assimilating a variety of modeling tools and data—including statewide water well datasets scarcely used for larger scientific analysis. Specifically, we combined (1) data-driven modeling of massive amounts of groundwater/geologic information across multiple spatial scales with (2) detailed analysis of groundwater salinity dynamics and process-based flow modeling at local scales. Statewide “hotspots” were delineated and county-level severity rankings were developed based on dissolved chloride (Cl) concentration percentiles. Within local hotspots, the relative impact of upwelling was determined to be controlled by: (1) streams—which act as “natural pumps” that bring deeper (more mineralized) groundwater to the surface; (2) the occurrence of nearly impervious geologic material at the surface—which restricts fresh water dilution of deeper, saline groundwater; and (3) the space–time evolution of water well withdrawals—which induces slow migration of saline groundwater from its natural course. This multiscale, data-intensive approach significantly improved our understanding of the brine upwelling processes in Michigan, and has applicability elsewhere given the growing availability of statewide water well databases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号