首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地球物理   1篇
地质学   7篇
  2006年   1篇
  2005年   1篇
  1999年   4篇
  1993年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Based on field investigations in northern Russia and interpretation of offshore seismic data, we have made a preliminary reconstruction of the maximum ice-sheet extent in the Barents and Kara Sea region during the Early/Middle Weichselian and the Late Weichselian. Our investigations indicate that the Barents and Kara ice sheets attained their maximum Weichselian positions in northern Russia prior to 50 000 yr BP, whereas the northeastern flank of the Scandinavian Ice Sheet advanced to a maximum position shortly after 17 000 calendar years ago. During the Late Weichselian (25 000-10 000 yr BP), much of the Russian Arctic remained ice-free. According to our reconstruction, the extent of the ice sheets in the Barents and Kara Sea region during the Late Weichselian glacial maximum was less than half that of the maximum model which, up to now, has been widely used as a boundary condition for testing and refining General Circulation Models (GCMs). Preliminary numerical-modelling experiments predict Late Weichselian ice sheets which are larger than the ice extent implied for the Kara Sea region from dated geological evidence, suggesting very low precipitation.  相似文献   
2.
Recent results concerning the extent of the last Weichselian (Valdaian) Kara Sea Ice Sheet in the area around the Polar Urals and the north-eastern Russian Plain allow reconstruction of the surface form of this part of the ice sheet by using a combination of moraine-ridge elevation data and ice-flow indicators. The resulting reconstruction suggests a thin ice sheet with a pronounced lowering of surface gradient at the transition from bedrock substrate around the Urals to a substrate consisting of unconsolidated sediments in the Pechora Basin. Comparison with similar reconstructions from along the southern and north-western parts of the Laurentide Ice Sheet margin, for which a deformable-bed model of glacier dynamics has been proposed, shows strong similarities in surface gradients and ice thicknesses as well in overall sedimentological and morphological characteristics of the associated basal till-deposits. This suggests comparable styles of glacier dynamics for the two ice sheets. If this first approximation of the Kara Sea Ice Sheet surface form is correct, it can be postulated that at least the south-western part of the ice sheet was much more mobile and dynamic than previously expected.  相似文献   
3.
Xenoliths of subducted crustal origin hosted by Miocene ultrapotassicigneous rocks in the southern Pamir provide important new informationregarding the geological processes accompanying tectonism duringthe Indo-Eurasian collision. Four types have been studied: sanidineeclogites (omphacite, garnet, sanidine, quartz, biotite, kyanite),felsic granulites (garnet, quartz, sanidine and kyanite), basalticeclogites (omphacite and garnet), and a glimmerite (biotite,clinopyroxene and sanidine). Apatite, rutile and carbonate arethe most abundant minor phases. Hydrous phases (biotite andphengite in felsic granulites and basaltic eclogites, amphibolesin mafic and sanidine eclogites) and plagioclase form minorinclusions in garnet or kyanite. Solid-phase thermobarometryreveals recrystallization at mainly ultrahigh temperatures of1000–1100°C and near-ultrahigh pressures of 2·5–2·8GPa. Textures, parageneses and mineral compositions suggestderivation of the xenoliths from subducted basaltic, tonaliticand pelitic crust that experienced high-pressure dehydrationmelting, K-rich metasomatism, and solid-state re-equilibration.The timing of these processes is constrained by zircon agesfrom the xenoliths and 40Ar/39Ar ages of the host volcanic rocksto 57–11 Ma. These xenoliths reveal that deeply subductedcrust may undergo extensive dehydration-driven partial melting,density-driven differentiation and disaggregation, and sequestrationwithin the mantle. These processes may also contribute to thealkaline volcanism observed in continent-collision zones. KEY WORDS: xenolith; high-pressure; subduction; Pamir; Tibet  相似文献   
4.
The article discusses geological data on proglacial lakes and spillways in the West Siberian Plain, data on crucial features of the Late Pleistocene reorganization of the drainage pattern of northern Eurasia. The discussion focuses on Late Pleistocene sediments along the margin of the last ice sheet and south of it, including new data recently obtained by the Russian-Norwegian project PECHORA in Trans-Uralia. Based on these data, the margin of the last ice sheet in the western and central parts of West Siberia is localized well above the Arctic Circle, i.e. 150-250 km north of the previously suggested ice limit. The available geochronological evidence indicates that the last ice dam across West Siberia, which diverted the great Siberian rivers to the south, appeared at early stages of the last, Weichselian ice age. The normal, northbound, drainage was restored later, within the time-span accessible to radiocarbon dating, when two pre-Holocene river terraces with mammal fauna were formed. The Late Weichselian was the driest period with ubiquitous aeolian activity and an absence of large water bodies. Preceding ice-dammed lakes of West Siberia could only drain through the Turgai valley which leads southward into the Aral and Caspian seas. The sedimentary sequence of this passage consists of lacustrine clay, diamictic gravity flows and aeolian sediments younger than 29 kyr which infilled the former spillway mainly in the Late Weichselian. The basal sand and gravel mantling the bedrock floor, which descends from 55 m a.s.l. at 55°N to 30-40 m a.s.l. in the south, is the only signature of a southward drainage. This fluvial episode probably reflects overflow of a Siberian proglacial lake whose water level could reach 60 m a.s.l. prior to 29 kyr BP.  相似文献   
5.
Sparker and shallow drilling data indicate that the Quaternary deposits in the Central Deep of the Barents Sea are mainly composed of glacigenic sediments. They comprise basal till and proximal and distal glaciomarine sediments deposited during the last glacial cycle. Apparent glaciotectonic features imply strong glacial erosion of Mesozoic bedrock. The general ice movement is assumed to have been from off Novaya Zemlya and it is concluded that the whole eastern Barents Sea was covered by the Late Weichselian ice-sheet.  相似文献   
6.
The youngest ice marginal zone between the White Sea and the Ural mountains is the W-E trending belt of moraines called the Varsh-Indiga-Markhida-Harbei-Halmer-Sopkay, here called the Markhida line. Glacial elements show that it was deposited by the Kara Ice Sheet, and in the west, by the Barents Ice Sheet. The Markhida moraine overlies Eemian marine sediments, and is therefore of Weichselian age. Distal to the moraine are Eemian marine sediments and three Palaeolithic sites with many C-14 dates in the range 16-37 ka not covered by till, proving that it represents the maximum ice sheet extension during the Weichselian. The Late Weichselian ice limit of M. G. Grosswald is about 400 km (near the Urals more than 700 km) too far south. Shorelines of ice dammed Lake Komi, probably dammed by the ice sheet ending at the Markhida line, predate 37 ka. We conclude that the Markhida line is of Middle/Early Weichselian age, implying that no ice sheet reached this part of Northern Russia during the Late Weichselian. This age is supported by a series of C-14 and OSL dates inside the Markhida line all of >45 ka. Two moraine loops protrude south of the Markhida line; the Laya-Adzva and Rogavaya moraines. These moraines are covered by Lake Komi sediments, and many C-14 dates on mammoth bones inside the moraines are 26-37 ka. The morphology indicates that the moraines are of Weichselian age, but a Saalian age cannot be excluded. No post-glacial emerged marine shorelines are found along the Barents Sea coast north of the Markhida line.  相似文献   
7.
In the case of 3D multilayered structures the 2D interval velocity analysis may be inaccurate. This fact is illustrated by synthetic examples. The method proposed solves the 3D inverse problem within the scope of the ray approach. The solution, i.e. the interval velocities and the reflection interface position, is obtained using data from conventional 2D line profiles arbitrarily located and from normal incidence time maps. Although the input information is essentially limited, the method presented reveals only minor biased velocity estimates. In order to implement the proposed 3D inversion method, we developed a processing procedure. The procedure performs the evaluation of reflection time and ray parameters along line profiles, 3D interval velocity estimation, and time-to-depth map migration. Tools to stabilize the 3D inversion are investigated. The application of the 3D inversion technique to synthetic and real data is compared with results of the 2D inversion.  相似文献   
8.
Glacial landforms in northern Russia, from the Timan Ridge in the west to the east of the Urals, have been mapped by aerial photographs and satellite images supported by field observations. An east-west trending belt of fresh hummock-and-lake glaciokarst landscapes has been traced to the north of 67°N. The southern boundary of these landscapes is called the Markhida Line, which is interpreted as a nearly synchronous limit of the last ice sheet that affected this region. The hummocky landscapes are subdivided into three types according to the stage of postglacial modification: Markhida, Harbei and Halmer. The Halmer landscape on the Uralian piedmont in the east is the freshest, whereas the westernmost Markhida landscape is more eroded. The west-east gradient in morphology is considered to be a result of the time-transgressive melting of stagnant glacier ice and of the underlying permafrost. The pattern of ice-pushed ridges and other directional features reflects a dominant ice flow direction from the Kara Sea shelf. Traces of ice movement from the central Barents Sea are only discernible in the Pechora River left bank area west of 50°E. In the Polar Urals the horseshoe-shaped end moraines at altitudes of up to 560 m a.s.l. reflect ice movement up-valley from the Kara Ice Sheet, indicating the absence of a contemporaneous ice dome in the mountains. The Markhida moraines, superimposed onto the Eemian strata, represent the maximum ice sheet extent in the western part of the Pechora Basin during the Weichselian. The Markhida Line truncates the huge arcs of the Laya-Adzva and Rogovaya ice-pushed ridges protruding to the south. The latter moraines therefore reflect an older ice advance, probably also of Weichselian age. Still farther south, fluvially dissected morainic plateaus without lakes are of pre-Eemian age, because they plunge northwards under marine Eemian sediments. Shorelines of the large ice-dammed Lake Komi, identified between 90 and 110 m a.s.l. in the areas south of the Markhida Line, are radiocarbon dated to be older than 45 ka. The shorelines, incised into the Laya-Adzva moraines, morphologically interfinger with the Markhida moraines, indicating that the last ice advance onto the Russian mainland reached the Markhida Line during the Middle or Early Weichselian, before 45 ka ago.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号