首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2011年   1篇
  2007年   1篇
  1997年   1篇
  1979年   1篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
The extent and behaviour of the southeast margin of the Laurentide Ice Sheet in Atlantic Canada is of significance in the study of Late Wisconsinan ice sheet-ocean interactions. Multibeam sonar imagery of subglacial, ice-marginal and glaciomarine landforms on German Bank, Scotian Shelf, provides evidence of the pattern of glacial-dynamic events in the eastern Gulf of Maine. Northwest-southeast trending drumlins and megaflutes dominate northern German Bank. On southern German Bank, megaflutes of thin glacial deposits create a distinct northwest-southeast grain. Lobate regional moraines (>10km long) are concave to the northwest, up-ice direction and strike southwest-northeast, normal to the direction of ice flow. Ubiquitous, overlying De Geer moraines (<10 km long) also strike southwest-northeast. The mapped pattern of moraines implies that, shortly after the last maximum glaciation, the tidewater ice sheet began to retreat north from German Bank, forming De Geer moraines at the grounding line with at least one glacial re-advance during the general retreat. The results indicate that the Laurentide Ice Sheet extended onto the continental shelf.  相似文献   
2.
This study investigates the morphology and Late Quaternary sediment distribution of the Makran turbidite system (Makran subduction zone, north‐west Indian Ocean) from a nearly complete subsurface mapping of the Oman basin, two‐dimensional seismic and a large set of coring data in order to characterize turbidite system architecture across an active (fold and thrust belt) margin. The Makran turbidite system is composed of a dense network of canyons, which cut into high relief accreted ridges and intra‐slope piggyback basins, forming at some locations connected and variably tortuous paths down complex slopes. Turbidite activity and trench filling rates are high even during the Holocene sea‐level highstand conditions. In particular, basin‐wide, sheet‐like thick mud turbidites, probably related to major mass wasting events of low recurrence time, drape the flat and unchannellized Oman abyssal plain. Longitudinal depth profiles show that the Makran canyons are highly disrupted by numerous thrust‐related large‐scale knickpoints (with gradients up to 20° and walls up to 500 m high). At the deformation front, the strong break of slope can lead to the formation of canyon‐mouth ‘plunge pools’ of variable shapes and sizes. The plunge pools observed in the western Makran are considerably larger than those previously described in sub‐surface successions; the first insights into their internal architecture and sedimentary processes are presented here. Large plunge pools in the western Makran are associated with large scoured areas at the slope break and enhanced sediment deposition downstream: high‐amplitude reflectors are observed inside the plunge pools, while their flanks are composed of thin‐bedded, fine‐grained turbidites deposited by the uppermost part of the turbidity flows. Thus, these architectural elements are associated with strong sediment segregation leading to specific trench‐fill mechanisms, as only the finer‐grained component of the flows is transferred to the abyssal plain. However, the Makran accretionary prism is characterized by strong along‐strike variability in tectonics and fluvial input distribution that might directly influence the turbidite system architecture (i.e. canyon entrenchment, plunge pool formation or channel development at canyon mouths), the sedimentary dynamics and the resulting sediment distribution. Channel formation in the abyssal plain and trench‐fill characteristics depend on the theoretical ‘equilibrium’ conditions of the feeder system, which is related closely to the balance between erosion rates and tectonic regime. Thus, the Makran turbidite system constitutes an excellent modern analogue for deep‐water sedimentary systems with structurally complex depocentres, in convergent margin settings.  相似文献   
3.
4.
Following the Painted Cave Fire of 25 June 1990 in Santa Barbara, California which burned 1214 ha, an emergency watershed protection plan was implemented consisting of stream clearing, grade stabilizers and construction of debris basins. Research was initiated focusing on hydrological response and channel morphology changes on two branches of Maria Ygnacio Creek, the main drainage of the burned area. Research results support the hypothesis that the response of small drainage basins in chaparral ecosystems to wildfire is complex and flushing of sediment by fluvial processes is more likely than by high magnitude debris flows. During the winter of 1990–1991, 35–66 cm of rainfall and intensities up to 10 cm per hour for a five-minute period were recorded with a seasonal total of 100% of average (normal) rainfall (average=63 cm/year). During the winter of 1991–1992, 48–74 cm of rainfall and intensities up to 8 cm per hour were recorded with a seasonal total of 115% of normal. Even though there was moderate rainfall on barren, saturated soils, no major debris flows occurred in burned areas. The winter of 1992–1993 recorded total precipitation of about 170% of normal, annual average intensities were relatively low and again no debris flows were observed. The response to winter storms in the first three years following the fire was a moderate but spectacular flushing of sediment, most of which was derived from the hillslopes upstream of the debris basins. The first significant storm and stream flow of the 1990–1991 winter was transport-limited resulting in large volumes of sediment being deposited in the channel of Maria Ygnacio Creek; the second storm and stream flow was sediment-limited and the channel scoured. Debris basins trapped about 23 000 m3, the majority coming from the storm of 17–20 March 1991. Sediment transported downstream during the three winters following the fire and not trapped in the debris basins was eventually flushed to the estuarine reaches of the creeks below the burn area, where approximately 108 000 m3 accumulated. Changes in stream morphology following the fire were dramatic as pools filled with sediment which greatly smoothed longitudinal and cross-sectional profiles. Major changes in channel morphology occur following a fire as sediment derived from the hillslope is temporarily stored in channels within the burned area. However, this sediment may quickly move downstream of the burned region, where it may accumulate reducing channel capacity and increasing the flood hazard. Ecological consequences of wildfire to the riparian zone of streams in the chaparral environment are virtually unknown, but must be significant as the majority of sediment (particularly gravel necessary for fish and other aquatic organisms) entering the system does so in response to fires. © 1997 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号