首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
大气科学   5篇
地球物理   23篇
地质学   11篇
海洋学   14篇
天文学   21篇
综合类   1篇
自然地理   6篇
  2020年   2篇
  2017年   1篇
  2016年   3篇
  2014年   5篇
  2013年   6篇
  2012年   1篇
  2011年   2篇
  2010年   6篇
  2009年   1篇
  2008年   4篇
  2007年   9篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   5篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1996年   1篇
  1995年   4篇
  1988年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1973年   1篇
  1968年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
1.
All mesosiderites previously reported were subjected to thermal metamorphism and/or partial melting on the parent body. Therefore, their primordial features have been mostly lost. Here, we report detailed petrological and mineralogical features on a mesosiderite, Northwest Africa (NWA) 1878. This meteorite comprises silicate lithology and aggregates of small spheroidal Fe‐Ni metal grains. Silicate lithology typically shows igneous texture without recrystallization features, and mainly consists of low‐Ca pyroxene and plagioclase. Pyroxenes often show normal zoning. Exsolution lamella of augite is rarely noticed and very thin in width, compared with other mesosiderites. A few magnesian olivine grains are encountered without typical corona texture around them. They are not equilibrated with pyroxene on a large scale. Plagioclase shows a wide compositional range. These results show that NWA 1878 hardly experienced thermal metamorphism, distinguished from mesosiderites of subgroups 1–4. Therefore, we propose that this is classified as subgroup 0 mesosiderite. Nevertheless, NWA 1878 was locally subjected to secondary reactions, such as weak reduction of pyroxene and Fe‐Mg diffusion between olivine and pyroxene, on the parent body.  相似文献   
2.
The results obtained from an Ocean General Circulation Model (OGCM), the Modular Ocean Model 2.2, forced with the National Center for Environmental Prediction/National Center for Atmospheric Research reanalysis data, and observational data have been utilized to document the climatological seasonal cycle of the upper ocean response in the Tropical Indian Ocean. We address the various roles played by the net surface heat flux and the local and remote ocean dynamics for the seasonal variation of near-surface heat budget in the Tropical Indian Ocean. The investigation is based in seven selected boxes in the Arabian Sea, Bay of Bengal and the Equatorial Indian Ocean. The changes of basin-wide heat budget of ocean process in the Arabian Sea and the Western Equatorial Indian Ocean show an annual cycle, whereas those in the Bay of Bengal and the Eastern Equatorial Indian Ocean show a semi-annual cycle. The time tendency of heat budget in the Arabian Sea depends on both the net surface heat flux and ocean dynamics while on the other hand, that in the Bay of Bengal depends mainly on the net surface flux. However, it has been found that the changes of heat budget are very different between western and eastern regional sea areas in the Arabian Sea and the Bay of Bengal, respectively. This difference depends on seasonal variations of the different local wind forcing and the different ocean dynamics associated with ocean eddies and Kelvin and Rossby waves in each regional sea areas. We also discuss the comparison and the connection for the seasonal variation of near-surface heat budget among their regional sea areas. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
3.
A four-dimensional variational data assimilation system has been applied to an experiment to describe the dynamic state of the North Pacific Ocean. A synthesis of available observational records and a sophisticated ocean general circulation model produces a dynamically consistent dataset, which, in contrast to the nudging approach, provides realistic features of the seasonally-varying ocean circulation with no artificial sources/sinks for temperature and salinity fields. This new dataset enables us to estimate heat and water mass transports in addition to the qualification of water mass formation and movement processes. A sensitivity experiment on our assimilation system reveals that the origin of the North Pacific Intermediate Water can be traced back to the Sea of Okhotsk and the Bering Sea in the subarctic region and to the subtropical Kuroshio region further south. These results demonstrate that our data assimilation system is a very powerful tool for the identification and characterization of ocean variabilities and for our understanding of the dynamic state of ocean circulation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
The estimation of evapotranspiration (E) in forested areas is required for various practical purposes (e.g. evaluation of drought risks) in Japan. This study developed a model that estimates monthly forest E in Japan with the input of monthly temperature (T). The model is based on the assumptions that E equals the equilibrium evaporation rate (Eeq) and that Eeq is approximated by a function of T. The model formulates E as E (mm month−1) = 3·48 T ( °C) + 32·3. The accuracy of the model was examined using monthly E data derived using short‐term water balance (WB) and micrometeorological (M) methods for 15 forest sites in Japan. The model estimated monthly E more accurately than did the Thornthwaite and Hamon equations according to regression analysis of the estimated E and E derived using the WB and M methods. Although the model tended to overestimate monthly E, the overestimation could be reduced by considering the effect of precipitation on E. As T data are commonly available all over Japan, the model would be a useful tool to estimate forest E in Japan. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
5.
In order to assess the recent anthropogenic environmental changes in Lake Kitaura, central Japan, changes during the past few centuries were reconstructed from results of radiometric and tephrochlonological age determination, magnetic susceptibility measurements, total organic carbon analyses, total nitrogen analyses and fossil diatom analyses on a sediment core from the lake. A total of six major and sub-zones are recognized according to the diatom fossil assemblages, and we discuss aquatic environmental change in Lake Kitaura mainly based on these diatom assemblage change. Zone Ia and Zone Ib (older than AD 1707) are marine to brackish. In Zone IIa (AD␣1707–AD 1836), most of the brackish diatoms disappeared, and were replaced by freshwater species indicating a decrease in salinity. We interpret the salinity decrease in Zone I–IIa as a sea-level fall during the Little Ice Age. The salinity of the lake decreased to near freshwater conditions in Zone IIb (AD 1836–AD 1970), which could arise from alteration in River Tone or development of a sandspit in the mouth of River Tone in addition to sea-level change. In Zone IIIa (AD 1970–AD 1987), the diatom assemblage indicates a freshwater environment, and sedimentation rates increase rapidly. These changes reflect sedimentary environment change and an ecosystem transition due to the construction of the tide gate. In Zone IIIb (AD 1987–AD 2002), the diatom flux (valves cm−2 y−1) increased and species composition changed. The changes in Zone IIIb show a good agreement with limnological monitoring data gathered from the lake. These paleolimnological data suggest that the recent human-induced changes of the aquatic environment of the lake after the 1970s exceed rates during the period concerned in this study.  相似文献   
6.
The natural remanent magnetization (NRM) in individual chondrules from the Allende meteorite was measured. These had previously been oriented relative to each other. The NRM directions of the chondrules are not initially random, but they become scattered after either alternating field (AF) or thermal demagnetization. The NRM is less stable than anhysteretic remanent magnetization (ARM) against AF-demagnetization.

The bulk of the NRM in the matrix is erased by 300°C. For the larger chondrules it is erased by 550°C, but for the smaller chondrules and the white inclusion a substantial decrease in NRM occurs by 350°C leaving about 20% up to 600°C. The behavior of the laboratory-induced ARM and the NRM under alternating field demagnetization suggest that the NRM of the chondrules consists of at least two components of TRM. One is a high-temperature component which was acquired when the individual chondrules were cooled through the Curie temperature and before they were assembled into the Allende meteorite. The other is a low-temperature component which was probably acquired in a field of about 1 Oe when the meteorite experienced thermal metamorphism or during the assembly of the meteorite.  相似文献   

7.
Hysteresis parameters Hcr, Hc, Jrs, Js, and their ratios Hcr/Hc, Jrs/Js have been measured for a large number of accurately prepared grain size fractions of magnetite in the range between 5 and 150 μm. For several grain size fractions three different concentrations of magnetite are used: 100, 0.1, and 0.002 vol.%. Most of the measurements were repeated after annealing the specimens to 600°C. For some specimens in the pseudo-single (PSD) and multidomain (MD) range Hc and Hcr have been measured as functions of temperature. Plots of the results from Hc, Hcr/Hc and Jrs/Js versus the grain size reveal curves with a convex and a concave part. Concentration and annealing affects the values of the hysteresis parameters, especially for grains coarser than 25 μm but the shape of the curves remains the same. The inflection point from convex to concave for all curves occurs at 25 μm and it appears to be independent of concentration and annealing. It is therefore proposed to define the transition from PSD to MD as the inflection point of these curves.  相似文献   
8.
Synthesized mineral powders with particle size of <100 nm are vacuum sintered to obtain highly dense and fine-grained polycrystalline mantle composites: single phase aggregates of forsterite (iron-free), olivine (iron containing), enstatite and diopside; two-phase composites of forsterite + spinel and forsterite + periclase; and, three-phase composites of forsterite + enstatite + diopside. Nano-sized powders of colloidal SiO2 and highly dispersed Mg(OH)2 with particle size of ≤50 nm are used as chemical sources for MgO and SiO2, which are common components for all of the aggregates. These powders are mixed with powders of CaCO3, MgAl2O4, and Fe(CO2CH3)2 to introduce mineral phases of diopside, spinel, and olivine to the aggregates, respectively. To synthesize highly dense composites through pressureless sintering, we find that calcined powders should be composed of particles that have: (1) fully or partially reacted to the desired minerals, (2) a size of <100 nm and (3) less propensity to coalesce. Such calcined powders are cold isostatically pressed and then vacuum sintered. The temperature and duration of the sintering process are tuned to achieve a balance between high density and fine grain size. Highly dense (i.e., porosity ≤1 vol%) polycrystalline mantle mineral composites with grain size of 0.3–1.1 μm are successfully synthesized with this method.  相似文献   
9.
The city of Bursa in Turkey is surrounded by major and secondary fault branches which splay from the North Anatolian Fault. Nonetheless, as their traces were not exactly known in the alluvial land of the Bursa basin, until this study, they were not plotted in the official active fault map of Turkey. In this study, the Bursa basin was observed by InSAR technology, and the subsidence which is consistent with the pull-apart basin geometry was detected in the basin. This finding was discussed in the local platforms in Turkey. Then, the city of Bursa was included into the priority provinces for the urban reconstruction under the risk of an earthquake, and the official active fault map of the region was revised by General Directorate of Mineral Research and Exploration of Turkey.  相似文献   
10.
We look at the relationship between the value of ε54Cr in bulk meteorites and the time (after calcium‐aluminum‐rich inclusion, CAI) when their parent bodies accreted. To obtain accretion ages of chondrite parent bodies, we estimated the maximum temperature reached in the insulated interior of each parent body, and estimated the initial 26Al/27Al for this temperature to be achieved. This initial 26Al/27Al corresponds to the time (after CAI formation) when cold accretion of the parent body would have occurred, assuming 26Al/27Al throughout the solar system began with the canonical value of 5.2 × 10?5. In cases of iron meteorite parent bodies, achondrite parent bodies, and carbonaceous chondrite parent bodies, we use published isotopic ages of events (such as core formation, magma crystallization, and growth of secondary minerals) in each body's history to obtain the probable time of accretion. We find that ε54Cr correlates with accretion age: the oldest accretion ages (1 ± 0.5 Ma) are for iron and certain other differentiated meteorites with ε54Cr of ?0.75 ± 0.5, and the youngest ages (3.5 ± 0.5 Ma) are for hydrated carbonaceous chondrites with ε54Cr values of 1.5 ± 0.5. Despite some outliers (notably Northwest Africa [NWA] 011 and Tafassasset), we feel that the correlation is significant and we suggest that it resulted from late, localized injection of dust with extremely high ε54Cr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号