首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   1篇
地质学   9篇
海洋学   3篇
天文学   1篇
自然地理   3篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1997年   1篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有17条查询结果,搜索用时 453 毫秒
1.
The response of shallow‐water sequences to oceanic anoxic event 2 and mid‐Cenomanian events 1a and 1b was investigated along the west African margin of Morocco north of Agadir (Azazoul) and correlated with the deep‐water sequence of the Tarfaya Basin (Mohammed Beach) based on biostratigraphy, mineralogy, phosphorus and stable isotopes. In the deeper Mohammed Beach section results show double peaks in δ13Corg for mid‐Cenomanian events 1a and 1b (Rotalipora reicheli biozone, lower CC10a biozone), the characteristic oceanic anoxic event 2 δ13C excursion (Rotalipora cushmani extinction, top of CC10a biozone) and laminated (anoxic) black shale. In the shallow environment north of Agadir, a fluctuating sea‐level associated with dysoxic, brackish and mesotrophic conditions prevailed during the middle to late Cenomanian, as indicated by oyster biostromes, nannofossils, planktonic and benthonic foraminiferal assemblages. Anoxic conditions characteristic of oceanic anoxic event 2 (for example, laminated black shales) did not reach into shallow‐water environments until the maximum transgression of the early Turonian. Climate conditions decoupled along the western margin of Morocco between mid‐Cenomanian event 1b and the Cenomanian–Turonian boundary, as also observed in eastern Tethys. North of Agadir alternating humid and dry seasonal conditions prevailed, whereas in the Tarfaya Basin the climate was dry and seasonal. This climatic decoupling can be attributed to variations in the Intertropical Convergence Zone and in the intensity of the north‐east trade winds in tropical areas.  相似文献   
2.
3.
This study aims to observe post‐Little Ice Age glacier retreat and the constitutive patterned ground development at two French Pyrenean glacier forelands (Taillon Glacier and Pays Baché Glacier). Periglacial feature observations are associated with periods of deglaciation using aerial photos and archive files. Four conclusions are drawn. (1) The two glaciers have lost respectively 68% and 92% of their surface since 1850, which corroborates observations on other Pyrenean glaciers. (2) Patterned ground can develop very rapidly, sometimes only 10 years after deglaciation. (3) Patterned ground size does not systematically increase as a function of the time elapsed since deglaciation. (4) All the forms, even those developing near the Little Ice Age moraines, are active. We propose that the location, activity and size of patterned ground are more probably linked to drift characteristics and local wetness conditions than to the time elapsed since deglaciation.  相似文献   
4.
Urgonian‐type carbonates are a characteristic feature of many late Early Cretaceous shallow‐marine, tropical and subtropical environments. The presence of typical photozoan carbonate‐producing communities including corals and rudists indicates the prevalence of warm, transparent and presumably oligotrophic conditions in a period otherwise characterized by the high density of globally occurring anoxic episodes. Of particular interest, therefore, is the exploration of relationships between Urgonian platform growth and palaeoceanographic change. In the French and Swiss Jura Mountains, the onset and evolution of the Urgonian platform have been controversially dated, and a correlation with other, better dated, successions is correspondingly difficult. It is for this reason that the stratigraphy and sedimentology of a series of recently exposed sections (Eclépens, Vaumarcus and Neuchâtel) and, in addition, the section of the Gorges de l’Areuse were analysed. Calcareous nannofossil biostratigraphy, the evolution of phosphorus contents of bulk rock, a sequence‐stratigraphic interpretation and a correlation of drowning unconformities with better dated sections in the Helvetic Alps were used to constrain the age of the Urgonian platform. The sum of the data and field observations suggests the following evolution: during the Hauterivian, important outward and upward growth of a bioclastic and oolitic carbonate platform is documented in two sequences, separated by a phase of platform drowning during the late Early Hauterivian. Following these two phases of platform growth, a second drowning phase occurred during the latest Hauterivian and Early Barremian, which was accompanied by significant platform erosion and sediment reworking. The Late Barremian witnessed the renewed installation of a carbonate platform, which initiated with a phase of oolite production, and which progressively evolved into a typical Urgonian carbonate platform colonized by corals and rudists. This phase terminated at the latest in the middle Early Aptian, due to a further drowning event. The evolution of this particular platform segment is compatible with that of more distal and well‐dated segments of the same northern Tethyan platform preserved in the Helvetic zone of the Alps and in the northern subalpine chains (Chartreuse and Vercors).  相似文献   
5.
This study investigates the morphology and Late Quaternary sediment distribution of the Makran turbidite system (Makran subduction zone, north‐west Indian Ocean) from a nearly complete subsurface mapping of the Oman basin, two‐dimensional seismic and a large set of coring data in order to characterize turbidite system architecture across an active (fold and thrust belt) margin. The Makran turbidite system is composed of a dense network of canyons, which cut into high relief accreted ridges and intra‐slope piggyback basins, forming at some locations connected and variably tortuous paths down complex slopes. Turbidite activity and trench filling rates are high even during the Holocene sea‐level highstand conditions. In particular, basin‐wide, sheet‐like thick mud turbidites, probably related to major mass wasting events of low recurrence time, drape the flat and unchannellized Oman abyssal plain. Longitudinal depth profiles show that the Makran canyons are highly disrupted by numerous thrust‐related large‐scale knickpoints (with gradients up to 20° and walls up to 500 m high). At the deformation front, the strong break of slope can lead to the formation of canyon‐mouth ‘plunge pools’ of variable shapes and sizes. The plunge pools observed in the western Makran are considerably larger than those previously described in sub‐surface successions; the first insights into their internal architecture and sedimentary processes are presented here. Large plunge pools in the western Makran are associated with large scoured areas at the slope break and enhanced sediment deposition downstream: high‐amplitude reflectors are observed inside the plunge pools, while their flanks are composed of thin‐bedded, fine‐grained turbidites deposited by the uppermost part of the turbidity flows. Thus, these architectural elements are associated with strong sediment segregation leading to specific trench‐fill mechanisms, as only the finer‐grained component of the flows is transferred to the abyssal plain. However, the Makran accretionary prism is characterized by strong along‐strike variability in tectonics and fluvial input distribution that might directly influence the turbidite system architecture (i.e. canyon entrenchment, plunge pool formation or channel development at canyon mouths), the sedimentary dynamics and the resulting sediment distribution. Channel formation in the abyssal plain and trench‐fill characteristics depend on the theoretical ‘equilibrium’ conditions of the feeder system, which is related closely to the balance between erosion rates and tectonic regime. Thus, the Makran turbidite system constitutes an excellent modern analogue for deep‐water sedimentary systems with structurally complex depocentres, in convergent margin settings.  相似文献   
6.
7.
Abstract Yaxcopoil‐1 (Yax‐1), drilled within the Chicxulub crater, was expected to yield the final proof that this impact occurred precisely 65 Myr ago and caused the mass extinction at the Cretaceous‐Tertiary (K/T) boundary. Instead, contrary evidence was discovered based on five independent proxies (sedimentologic, biostratigraphic, magnetostratigraphic, stable isotopic, and iridium) that revealed that the Chicxulub impact predates the K/T boundary by about 300,000 years and could not have caused the mass extinction. This is demonstrated by the presence of five bioturbated glauconite layers and planktic foraminiferal assemblages of the latest Maastrichtian zone CF1 and is corroborated by magnetostratigraphic chron 29r and characteristic late Maastrichtian stable isotope signals. These results were first presented in Keller et al. (2004). In this study, we present more detailed evidence of the presence of late Maastrichtian planktic foraminifera, sedimentologic, and mineralogic analyses that demonstrate that the Chicxulub impact breccia predates the K/T boundary and that the sediments between the breccia and the K/T boundary were deposited in a normal marine environment during the last 300,000 years of the Cretaceous.  相似文献   
8.
A major shift from Urgonian oligotrophic carbonate accumulation to orbitolinid‐rich mixed siliciclastic–carbonate deposition is observed near the Barremian–Aptian boundary in many sections both within and outside the shallow‐marine Tethyan Realm. This important facies change in the Swiss Helvetic Alps is documented here and interpreted in the context of general palaeoenvironmental change. To achieve this, a detailed micropalaeontological, sedimentological, mineralogical and geochemical study has been carried out on six sections across the upper part of the lower Schrattenkalk Member (Late Barremian), the Rawil Member (formerly ‘Lower Orbitolina Beds’, earliest Aptian) and the lowermost part of the upper Schrattenkalk Member (Early Aptian). The sediments of the Rawil Member exhibit inner‐platform facies with rudists, miliolids, orbitolinids and dasycladals to outer‐platform facies characterized by small benthic foraminifera, orbitolinids, crinoids and bryozoans. Stratigraphic trends in microfacies environments and the composition of microfossil assemblages, indicate that the Rawil Member includes a transgressive systems tract and the base of a highstand systems tract which are composed of an increasing number of parasequences in distal directions (five to nine in the sections studied here). The sea‐level rise discerned in the Rawil Member is coeval with increased detrital input and phosphorus burial, with maximum values up to 80 times and 21 times the background values in the subjacent part of the lower Schrattenkalk Member, respectively. Furthermore, the Rawil Member records the appearance of kaolinite, indicating a change towards tropical and more humid climate conditions. This change may have led to an increase in continental weathering rates and an associated increase in detrital and nutrient fluxes towards the ocean. The phase of climate change observed near the Barremian–Aptian boundary may have been triggered by a phase of intensified volcanic activity linked with the onset of the Ontong Java large igneous province and the Rawil Member may be the expression of a precursor episode to Oceanic Anoxic Event 1a in the shallow‐marine environment.  相似文献   
9.
在综合现代大洋活性磷循环特征的基础上,提出大洋中活性磷主要来源于有CO2 参与的地表岩石的化学风化,输入通量在很大程度上受到气候与构造等因素的控制;进入大洋之后的活性磷经光合作用而进入有机物,并通过一系列的转化环节而最终埋藏下来;从而可以根据古海洋活性磷埋藏记录,推断地质历史中不同时间尺度的全球变化情况。对比160 Ma以来的古海洋总磷和100 Ma活性磷埋藏记录可以发现:(1)总磷和活性磷的埋藏速率与长期的海平面变化明显关联,在温室气候条件下,两者基本呈正相关关系;在冰室气候条件下则为反相关关系;(2)总磷和活性磷埋藏速率的变化,能够在一定程度上指示古海洋营养条件的变化;(3)白垩纪中期大洋缺氧事件对应活性磷的埋藏峰值,表明大洋活性磷循环与大洋缺氧事件之间存在着非常密切的关系。此外还例举了古海洋活性磷埋藏记录在氧气地球化学循环研究中的运用,指出活性磷循环对大气氧含量的稳定起到重要的作用。文章最后对古海洋活性磷埋藏记录研究中存在的一些问题进行了讨论。  相似文献   
10.
Hummocky cross-stratification is a sedimentary structure which is widely interpreted as the sedimentary record of an oscillatory current generated by energetic storm waves remobilizing surface sediment on the continental shelf. Sedimentary structures named hummocky cross-stratification-like structures, similar to true hummocky cross-stratification, have been observed in the Turonian–Senonian Basque Flysch Basin (south-west France). The bathymetry (1000 to 1500 m) suggests that the observed sedimentary structures do not result from a hydrodynamic process similar to those acting on a continental shelf. The morphology of these three-dimensional structures shares similarities with the morphology of hummocky cross-stratification despite a smaller size. The lateral extent of these structures ranges from a few decimetres to many decimetres; they consist of convex-up domes (hummock) and concave-up swales with a non-erosive base. Four types of hummocky cross-stratification-like geometries are described; they occur in association with structures such as climbing current ripple lamination and synsedimentary deformations. In the Basque Flysch, hummocky cross-stratification-like structures are only found in the Tc interval of the Bouma sequence. Hummocky cross-stratification-like structures are sporadic in the stratigraphic series and observed only in few turbidite beds or bed packages. This observation suggests that hummocky cross-stratification-like structures are linked genetically to the turbidity current but form under a very restricted range of parameters. These structures sometimes show an up-current (upslope) migration trend (antidunes). In the described examples, they could result from standing waves forming at the upper flow interface because of Kelvin–Helmholtz instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号