首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
地球物理   11篇
地质学   14篇
海洋学   8篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2008年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
排序方式: 共有33条查询结果,搜索用时 203 毫秒
1.
This paper presents the results of an experimental investigation on the near-bed flow patterns, the bed shear stress amplification and scour around the head of a vertical-wall breakwater, using regular waves. The Keulegan-Carpenter number (KC), based on the diameter of the breakwater head, is found to be the major parameter that governs the flow and the equilibrium scour depth. Basic flow structures are identified as function of KC. The scour depth is found to increase with increasing the Keulegan-Carpenter number. The necessary extent of the conventional stone protection is studied. An empirical formula is worked out for the width of the protection layer as function of KC. Also, the effects of head shape, the angle of attack and the presence of a co-directional current are investigated. The results indicate that the scour depth is increased considerably in the presence of a current. Likewise, the scour depth is increased when the head shape is changed from a round shape to a sharp-edged one. It is found that the angle of attack is also an influencing factor as regards the scour depth.  相似文献   
2.
3.
4.
5.
Onset of scour below pipelines and self-burial   总被引:1,自引:0,他引:1  
This paper summarizes the results of an experimental study on the onset of scour below and self-burial of pipelines in currents/waves. Pressure was measured on the surface of a slightly buried pipe at two points, one at the upstream side and the other at the downstream side of the pipe, both in the sand bed. The latter enabled the pressure gradient (which drives a seepage flow underneath the pipe) to be calculated. The results indicated that the excessive seepage flow and the resulting piping are the major factor to cause the onset of scour below the pipeline. The onset of scour occurred always locally (but not along the length of the pipeline as a two-dimensional process). The critical condition corresponding to the onset of scour was determined both in the case of currents and in the case of waves. Once the scour breaks out, it will propagate along the length of the pipeline, scour holes being interrupted with stretches of soil (span shoulders) supporting the pipeline. As the span shoulder gets shorter and shorter, more and more weight of the pipeline is exerted on the soil. In this process, a critical point is reached where the bearing capacity of the soil is exceeded (general shear failure). At this point, the pipe begins to sink at the span shoulder (self-burial). It was found that the self-burial depth is governed mainly by the Keulegan–Carpenter number. The time scale of the self-burial process, on the other hand, is governed by the Keulegan–Carpenter number and the Shields parameter. Diagrams are given for the self-burial depth and the time scale of the self-burial process.  相似文献   
6.
7.
The modified stochastic finite fault modelling technique based on dynamic corner frequency has been used to simulate the strong ground motions of M w 4.8 earthquake in the Kachchh region of Gujarat, India. The accelerograms have been simulated for 14 strong motion accelerographs sites (11 sites in Kachchh and three sites in Saurashtra) where the earthquake has been recorded. The region-specific source, attenuation and generic site parameters, which are derived from recordings of small to moderate earthquakes, have been used for the simulations. The main characteristics of the simulated accelerograms, comprised of peak ground acceleration (pga), duration, Fourier and response spectra, predominant period, are in general in good agreement with those of observed ones at most of the sites. The rate of decay of simulated pga values with distance is found to be similar with that of observed values. The successful modelling of the empirical accelerograms indicates that the method can be used to prepare wide range of scenarios based on simulation which provide the information useful for evaluating and mitigating the seismic hazard in the region.  相似文献   
8.
In this study, the effect of ground geology on the acceleration response spectra is studied at 32 sites in Gujarat, India. The sites are grouped into Proterozoic, Mesozoic, Tertiary and Quaternary. The normalized acceleration response spectra at 5% damping of 407 strong ground motions (horizontal and vertical components) recorded at these sites varying in magnitude from 3.0 to 5.7 are determined. The study shows that the shape of the acceleration response spectra is influenced by the regional geology and local site conditions. The peak of maximum horizontal spectral amplification is between 0.03 and 0.05 s in Proterozoic formations, 0.06 and 0.10 s in Mesozoic formations, 0.06 and 0.08 s in Tertiary and 0.12 s in Quaternary formations. The maximum vertical spectral acceleration is at 0.025 s in Proterozoic, 0.07 s in Mesozoic, 0.05 s in Tertiary and 0.10 s in Quaternary formations. The average acceleration amplification factor in all the geological formations is between 2.5 and 3.0 both in horizontal and vertical components. It has been observed that acceleration response spectra at sites having same geological formations are also influenced by local site conditions. The study shows that the acceleration response spectrum in the current Indian code applicable for the entire country underestimates the seismic forces at hard-rock sites and overestimates at soft-soil sites. Using recorded strong motion data with Mw ranging from 3.5 to 5.7, an attenuation relationship is developed at six periods to predict geometric mean of horizontal spectral amplitudes for rock and soil sites. The spectral amplitudes predicted with the attenuation relationship match well with the observed one within statistical limits for hypocentral distances less than 200 km.  相似文献   
9.
Prajapati  Sanjay K.  Kumar  Ashok  Chopra  Sumer  Bansal  B. K. 《Natural Hazards》2013,69(3):1781-1801

We compiled available information of damages and other effects caused by the September 18, 2011, Sikkim–Nepal border earthquake from the print and electronic media, and interpreted them to obtain Modified Mercalli Intensity (MMI) at over 142 locations. These values are used to prepare the intensity map of the Sikkim earthquake. The map reveals several interesting features. Within the meizoseismal area, the most heavily damaged villages are concentrated toward the eastern edge of the inferred fault, consistent with eastern directivity. The intensities are amplified significantly in areas located along rivers, within deltas or on coastal alluvium such as mud flats and salt pans. We have also derived empirical relation between MMI and ground motion parameters using least square regression technique and compared it with the available relationships available for other regions of the world. Further, seismic intensity information available for historical earthquakes which have occurred in NE Himalayas along with present intensity has been utilized for developing attenuation relationship for NE India using two-step regression analyses. The derived attenuation relation is useful for assessing damage of a potential future earthquake (earthquake scenario-based planning purposes) for the northeast Himalaya region.

  相似文献   
10.
Wave and current experiments have been carried out with the purpose of measuring the instantaneous bed shear stress over a hydraulically smooth bed, in order to evaluate the extent of the interaction. Measurements have been carried out with a dual-component hot-film probe which, with some constraints, enables the magnitude and direction of the instantaneous bed shear stress to be measured. Results are presented as maximum obtained bed shear stress values over one cycle and the corresponding mean value in the direction of the current for various combinations of waves and current.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号