首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   7篇
大气科学   1篇
地球物理   13篇
地质学   16篇
海洋学   3篇
天文学   8篇
自然地理   1篇
  2021年   1篇
  2020年   4篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2001年   2篇
  2000年   1篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1943年   2篇
  1940年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
The statistical results presented by Achong and Stahl (1984) may alternatively be interpreted as demonstrating a strong dependence of SID flare production on Mt. Wilson magnetic class of the parent sunspot group.  相似文献   
2.
3.
Fluxes contributing to the particulate carbonate system in deep-sea sediments were investigated at the BENGAL site in the Porcupine Abyssal Plain (Northeast Atlantic). Deposition fluxes were estimated using sediment traps at a nominal depth of 3000 m and amounted to 0.37±0.1 mmol C m−2 d−1. Dissolution of carbonate was determined using flux of total alkalinity from in situ benthic chambers, is 0.4±0.1 mmol C m−2 d−1. Burial of carbonate was calculated from data on the carbonate content of the sediment and sedimentation rates from a model age based on 14C dating on foraminifera (0.66±0.1 mmol C m−2 d−1). Burial plus dissolution was three times larger than particle deposition flux which indicates that steady-state is not achieved in these sediments. Mass balances for other components (BSi, 210Pb), and calculations of the focusing factor using 230Th, show that lateral inputs play only a minor role in this imbalance. Decadal variations of annual particle fluxes are also within the uncertainty of our average. Long-term change in dissolution may contribute to the imbalance, but can not be the main reason because burial alone is greater than the input flux. The observed imbalance is thus the consequence of a large change of carbonate input flux which has occured in the recent past. A box model is used to check the response time of the solid carbonate system in these sediments and the time to reach a new steady-state is in the order of 3 kyr. Thus it is likely that the system has been perturbed recently and that large dissolution and burial rates reflect the previously larger particulate carbonate deposition rates. We estimate that particulate carbonate fluxes have certainly decreased by a factor of at least 3 and that this change has occurred during the last few centuries.  相似文献   
4.
We observed near-Main-Sequence B-stars in the Magellanic Clouds with the 3.6 m telescope and CASPEC at La Silla. We obtained spectra of high resolution and high S/N-ratio. The stars are members of the blue globular clusters NGC 1818 (LMC) and NGC 330 (SMC). The spectra are used for differential abundance analyses using HER as galactic reference star. Apart from CNO the metals are underabundant by about a factor of three and four for the LMC and SMC star, respectively. The CNO pattern is interesting since in both stars oxygen is considerably more abundant than carbon.Based on observations collected at ESO, La Silla and on Calar Alto, Spain and on observations made with the International Ultraviolet Explorer.  相似文献   
5.
An isotopic type-curve has been defined based on the 13C12C ratios of the saturated, aromatic, heterocomponent (NOSs), and asphaltene fractions of crude oils. These fractions show 13C enrichments with increasing polarity or polarizability. This systematic pattern can be used to estimate the 13C12C ratio of the kerogen from which the oil had been generated. Genetically associated source rock oil pairs have been used to show that the difference between the measured and the estimated δ-values of kerogen is about ?0.5%., and between the δ-values of the kerogen and the asphaltene fraction is approximately +0.6%.  相似文献   
6.
Previous work has shown that streamflow response during baseflow conditions is a function of storage, but also that this functional relationship varies among seasons and catchments. Traditionally, hydrological models incorporate conceptual groundwater models consisting of linear or non‐linear storage–outflow functions. Identification of the right model structure and model parameterization however is challenging. The aim of this paper is to systematically test different model structures in a set of catchments where different aquifer types govern baseflow generation processes. Nine different two‐parameter conceptual groundwater models are applied with multi‐objective calibration to transform two different groundwater recharge series derived from a soil‐atmosphere‐vegetation transfer model into baseflow separated from streamflow data. The relative performance differences of the model structures allow to systematically improve the understanding of baseflow generation processes and to identify most appropriate model structures for different aquifer types. We found more versatile and more aquifer‐specific optimal model structures and elucidate the role of interflow, flow paths, recharge regimes and partially contributing storages. Aquifer‐specific recommendations of storage models were found for fractured and karstic aquifers, whereas large storage capacities blur the identification of superior model structures for complex and porous aquifers. A model performance matrix is presented, which highlights the joint effects of different recharge inputs, calibration criteria, model structures and aquifer types. The matrix is a guidance to improve groundwater model structures towards their representation of the dominant baseflow generation processes of specific aquifer types. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
7.
Based on in situ microprofiles, chamber incubations and eddy covariance measurements, we investigated the benthic carbon mineralization and nutrient regeneration in a ~65-m-deep sedimentation basin of Loch Etive, UK. The sediment hosted a considerable amount of infauna that was dominated by the brittle star A. filiformis. The numerous burrows were intensively irrigated enhancing the benthic in situ O2 uptake by ~50 %, and inducing highly variable redox conditions and O2 distribution in the surface sediment as also documented by complementary laboratory-based planar optode measurements. The average benthic O2 exchange as derived by chamber incubations and the eddy covariance approach were similar (14.9 ± 2.5 and 13.1 ± 9.0 mmol m?2 day?1) providing confidence in the two measuring approaches. Moreover, the non-invasive eddy approach revealed a flow-dependent benthic O2 flux that was partly ascribed to enhanced ventilation of infauna burrows during periods of elevated flow rates. The ratio in exchange rates of ΣCO2 and O2 was close to unity, confirming that the O2 uptake was a good proxy for the benthic carbon mineralization in this setting. The infauna activity resulted in highly dynamic redox conditions that presumably facilitated an efficient degradation of both terrestrial and marine-derived organic material. The complex O2 dynamics of the burrow environment also concurrently stimulated nitrification and coupled denitrification rates making the sediment an efficient sink for bioavailable nitrogen. Furthermore, bioturbation mediated a high efflux of dissolved phosphorus and silicate. The study documents a high spatial and temporal variation in benthic solute exchange with important implications for benthic turnover of organic carbon and nutrients. However, more long-term in situ investigations with like approaches are required to fully understand how environmental events and spatio-temporal variations interrelate to the overall biogeochemical functioning of coastal sediments.  相似文献   
8.
Hydrogeology Journal - A new concept is proposed for describing, analysing and predicting the dynamic behaviour of groundwater resources based on classification and similarity. The concept makes...  相似文献   
9.
10.
Quantifying anthropogenic contributions to elemental cycles provides useful information regarding the flow of elements important to industrial and agricultural development and is key to understanding the environmental impacts of human activity. In particular, when anthropogenic fluxes reach levels large enough to influence an element's overall cycle the risk of adverse environmental impacts rises. While intensive groundwater pumping has been observed to affect a wide-range of environmental processes, the role of intensive groundwater extraction on global anthropogenic element cycles has not yet been characterized. Relying on comprehensive datasets of groundwater and produced water (groundwater pumped during oil/gas extraction) chemistry from the U.S. Geological Survey along with estimates of global groundwater usage, I estimate elemental fluxes from global pumping, consumptive use, and depletion of groundwater. I find that groundwater fluxes appreciably contribute to a number of elements overall cycles and thus these cycles were underestimated in prior studies, which did not recognize groundwater pumping's role. I also estimate elemental loadings to agricultural soils in the United States and find that in some regions, groundwater may provide a significant portion (more than 10%) of crop requirements of key nutrients (K, N). With nearly 40% of globally irrigated land under groundwater irrigation, characterizing nutrient and toxic element fluxes to these soils, which ultimately influence crop yields, is important to our understanding of agricultural production. Thus, this study improves our basic understanding of anthropogenic elemental cycles and demonstrates that quantification of groundwater pumping elemental fluxes provides valuable information about the potential for environmental impacts from groundwater pumping.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号