首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
地质学   2篇
自然地理   1篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Agricultural activities emit substantial amounts of methane (CH4) and nitrous oxides (N2O), the two important greenhouse gases (GHG) with high global warming potentials (GWP). So far, many studies have already been carried out at national and state level, but lack micro‐level (district or block‐level) inventory in India. The present study sheds light on the flux of CH4 and N2O (from all possible sources) from agricultural soil of various blocks in the Murshidabad district, based on the inventory prepared, using the IPCC methodology, with adjusted emission factors and coefficients appropriate for the local level. The economy of the Murshidabad district almost completely rests on agriculture as more than 80 per cent of the population is directly or indirectly dependent on it for their livelihood. Paddy is the dominating crop, cultivated on more than 60 per cent of the gross cropped area. The present work is based on the review of various literature and reports collected from respective state government offices and websites. Results show that CH4 and N2O emission from the agricultural fields are 126.405 Gg and 0.652 Gg respectively for the year 2011?12 with a large scale spatial variation (block‐level) within the district.  相似文献   
2.
Banerjee  Soham  Kumar  Abhishek 《Natural Hazards》2018,92(2):1039-1064
Natural Hazards - National capital of India, Delhi is under moderate to high seismic hazard due to active regional faults such as the Mahendragarh fault, the Delhi Haridwar fault, the Sohna fault,...  相似文献   
3.

Reservoir simulators model the highly nonlinear partial differential equations that represent flows in heterogeneous porous media. The system is made up of conservation equations for each thermodynamic species, flash equilibrium equations and some constraints. With advances in Field Development Planning (FDP) strategies, clients need to model highly complex Improved Oil Recovery processes such as gas re-injection and CO2 injection, which requires multi-component simulation models. The operating range of these simulation models is usually around the mixture critical point and this can be very difficult to simulate due to phase mislabeling and poor nonlinear convergence. We present a Machine Learning (ML) based approach that significantly accelerates such simulation models. One of the most important physical parameters required in order to simulate complex fluids in the subsurface is the critical temperature (Tcrit). There are advanced iterative methods to compute the critical point such as the algorithm proposed by Heidemann and Khalil (AIChE J 26,769–799, 1980) but, because these methods are too expensive, they are usually replaced by cheaper and less accurate methods such as the Li-correlation (Reid and Sherwood 1966). In this work we use a ML workflow that is based on two interacting fully connected neural networks, one a classifier and the other a regressor, that are used to replace physical algorithms for single phase labelling and improve the convergence of the simulator. We generate real time compositional training data using a linear mixing rule between the injected and the in-situ fluid compositions that can exhibit temporal evolution. In many complicated scenarios, a physical critical temperature does not exist and the iterative sequence fails to converge. We train the classifier to identify, a-priori, if a sequence of iterations will diverge. The regressor is then trained to predict an accurate value of Tcrit. A framework is developed inside the simulator based on TensorFlow that aids real time machine learning applications. The training data is generated within the simulator at the beginning of the simulation run and the ML models are trained on this data while the simulator is running. All the run-times presented in this paper include the time taken to generate the training data and train the models. Applying this ML workflow to real field gas re-injection cases suffering from severe convergence issues has resulted in a 10-fold reduction of the nonlinear iterations in the examples shown in this paper, with the overall run time reduced 2- to 10-fold, thus making complex FDP workflows several times faster. Such models are usually run many times in history matching and optimization workflows, which results in compounded computational savings. The workflow also results in more accurate prediction of the oil in place due to better single phase labelling.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号