首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   1篇
测绘学   1篇
大气科学   5篇
地球物理   26篇
地质学   29篇
海洋学   31篇
天文学   5篇
综合类   4篇
自然地理   2篇
  2021年   2篇
  2018年   1篇
  2017年   3篇
  2016年   3篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   2篇
  2004年   5篇
  2003年   1篇
  2002年   4篇
  2001年   4篇
  1998年   6篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1989年   2篇
  1988年   4篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1971年   2篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
1.
CS(J=1–0), C34S(J=1–0), and CH3OH(10–00A and E) emission lines in the core region of molecular cloud associated with NGC 7538 have been surveyed at angular resolution of 33. Distribution of CS column density shows two prominent peaks. Both blue and red wings in CS line are most prominent at 30 northwest of IRS 11.Paper presented at the IAU Third Asian-Pacific Regional Meeting, held in Kyoto, Japan, between 30 September–6 October, 1984.This work was carried out under the common use observation program at the Nobeyama Radio Observatory (NRO). NRO, a branch of the Tokyo Astronomical Observatory, University of Tokyo, is a cosmic radio observing facility open to outside users.  相似文献   
2.
Some features of jump in water temperature in aSargassum forest   总被引:1,自引:0,他引:1  
To clarify the influence of aSargassum forest on water temperature distributions observations were made inside and outside aSargassum forest off the Nagata Shore on the northern Saiki Bay open to the Bungo Channel on the Pacific side of Kyushu, Japan. About sixty thermistor probes were deployed at 0.5 m depth intervals from the bottom to the sea surface at seven stations spaced at 50–80 m distances along two transects: one inside the forest and the other outside. Water temperature was measured at five minutes intervals from 6 to 9 August 1987 with thermistor probes. The spatial standing crop distribution of theSargassum forest along the transects was investigated. A water temperature jump of about 2°C, recorded during the observation, is probably caused by an intrusion of a warm water mass from the central Bungo Channel to Saiki Bay. The water temperature jump under theSargassum forest on the rough bottom with stones occurred one to two hours behind that outside the forest (sandy bed) although the distance between the transects inside and outside the forest was only 50–80 m. It is suggested that theSargassum forest and the rough bottom would prevent intruding warm water from smoothly replacing cold water due to resistance of theSargassum species and the bottom to a current.  相似文献   
3.
Measurements of dry weight, carbon- and nitrogen contents together with the body length of important zooplankton from the Inland Sea of Japan were made using freshly caught specimens. The values of the former three parameters were found to be highly correlated to length, and species specific regression equations were calculated for 10 species of Copepoda (Calanus sinicus, Euchaeta plana, E. concinna, Centropages abdominalis, Sinocalanus tenellus, Acartia clausi, A. tsuensis, Tortanus forcipatus, Oithona brevicornis andO. similis), 3 species of Cladocera (Podon leuckarti, P. polyphemoides andPenilia avirostris), 1 species of each of Mysidacea (Neomysis japonica), and Natantia (Acetes japonicus), and two forms of Chaetognatha (Sagitta crassa andS. crassa f.naikaiensis).  相似文献   
4.
Standing stocks and production rates of phytoplankton and planktonic copepods were investigated at 15 stations in the Inland Sea of Japan during four cruises in October–November 1979, January, April and June 1980. The overall mean of phytoplankton biomass was relatively constant during the study period, ranging from 2.3 mg chl.a m–3 in April to 3.6 mg chl.a m–3 in October–November. Primary production was low in January (mean: 90 mg C m–2 d–1), but higher than 375 mg C m–2 d–1 on the other occasions. Integrated annual primary production was 122 g C m–2 yr–1. In terms of carbon weight,Paracalanus parvus was the most important copepod species. The variation of the mean copepod biomass (range: 7.6 mg C m–3 in April to 20.2 mg C m–3 in June) was smaller than that of copepod production, which was estimated by the Ikeda-Motoda's physiological method. Copepod producion was low in cold seasons (0.6 and 0.9 mg C m–3 d–1 in January and April, respectively), and increased, following the elevation of primary production, to 4.9 mg C m–3 d–1 in June. Annual copepod production was 33.7 g C m–2 yr–1, of which herbivore (secondary) production was 26.4 g C m–2 yr–1 (21.7% of primary production). The ratios of pelagic planktivorous fish catch and total fish catch to the primary production were 0.82 and 1.8%, respectively, indicating very high efficiency in exploiting fishery resources in the Inland Sea of Japan.  相似文献   
5.
An experiment on evapotranspiration from citrus trees under irrigation with saline waterwas carried out for 4 months. Two lysimeters planted with a citrus tree in the green house wereused. One lysimeter was irrigated with saline water (NaCl and CaCl2 of 2000 mg/L equivalence,EC = 3.8 dS/m, SAR = 5.9) and the other was irrigated with freshwater using drip irrigation. Theapplied irrigation water was 1.2 times that of the evapotranspiration on the previous day.Evapotranspiration was calculated as the change in lysimeter weight recorded every 30 minutes.The lysimeters were filled with soil with 95.8% sand. The results of the experiment were as follows.(i) The evapotranspiration from citrus tree was reduced after irrigation with saline water. Theevapotranspiration returns to normal after leaching. However it takes months to exhaust the saltfrom the tree. ( ii ) To estimate the impact of irrigation with saline water on the evapotranspirationfrom citrus trees, the reduction coefficient due to salt stress (Ks) was used in this experiment.Evapotranspiration under irrigation with saline water (ETs) can be calculated from evapotranspira-tion under irrigation with freshwater (ET) by the equation ETs = Ks× ET. Ks can be expressed as afunction of ECsw. (iii) The critical soil-water electrical conductivity (ECsw) is 9.5 dS/m, beyondwhich adverse effects on evapotranspiration begin to appear. If ECsw can be controlled at below9.5 dS/m, saline water can be safely used for irrigation.  相似文献   
6.
—?Microseismicity (M?M?M?M??6 were also monitored at a crustal movement monitoring station located several hundred meters from the veins. It was found that the opening of the vertical ore veins primary led to significant strain and tilt, but not to seismicity, because the delay and the longer duration of the seismicity were significant. Most seismic events involve thrusting mechanisms that are consistent with the present stress state of E-W-oriented tectonic compression, but are not consistent with the opening of the deepest ore vein. Interstingly, all the events within a few months of the heavy rainfall occurred near the faults that offset the deepest ore veins, wheareas all those events located away from the deepest ore veins occurred many months after the heavy rainfall. Consequently, the delayed diffusion of water appears to have played a dominant role in reducing rock strength, which led to seismicity in the Ikuno mine.  相似文献   
7.
8.
The spatial distribution of the strength inside the earth-fill is identified by the sounding tests. In this research, the Swedish weight sounding (SWS) is employed, and the spatial high-density test is performed to identify the spatial correlation structure. Furthermore, the synthesised approach of the SWS and surface wave method, which is one of the geophysical method, is proposed to compensate the shortage of each approach. Consequently, the correlation structure of an earth-fill could be identified accurately, and the high resolution of the spatial distribution could be visualised based on the survey results.  相似文献   
9.
Based on a block structure model of the inner belt of central Japan, an examination was conducted of the space-time distribution patterns of destructiv magnitudes M 6.4 or greater (M =Japan Meteorological Agency Scale). The distribution patterns revealed a periodicity in earthquake activit seismic gaps. Major NW—SE trending left-lateral active faults divide the inner belt of central Japan into four blocks, 20–80 km wide. The occurrenc A.D. with M ≥ 6.4, which have caused significant damage, were documented in the inner belt of central Japan. The epicenters of these earthquakes close to the block boundaries.

Using the relationship between the magnitude of earthquakes which occurred in the Japanese Islands and the active length of faults that generated them, movement is calculated for each historical earthquake. Space—time distributions of earthquakes were obtained from the calculated lengths, the latitud of generation. When an active period begins, a portion or segment of the block boundary creates an earthquake, which in turn appears on the ground surf active period ends when the block boundary generates earthquakes over the entire length of the block boundary without overlapping.

Five seismic gaps with fault lengths of 20 km or longer can be found in the inner belt of central Japan. It is predicted that the gaps will generate ea magnitudes of 7.0. These data are of significance for estimating a regional earthquake risk over central Japan in the design of large earthquake resist

The time sequences of earthquakes on the block boundaries reveal a similar tendency, with alternating active periods with seismic activity and quiet pe activity. The inner belt of central Japan is now in the last stage of an active period. The next active period is predicted to occur around 2500 A.D.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号