首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
地质学   3篇
天文学   4篇
  2015年   1篇
  2012年   1篇
  2011年   1篇
  2008年   1篇
  1998年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
2.
Abstract– The Opportunity rover of the Mars Exploration Rover mission encountered an isolated rock fragment with textural, mineralogical, and chemical properties similar to basaltic shergottites. This finding was confirmed by all rover instruments, and a comprehensive study of these results is reported here. Spectra from the miniature thermal emission spectrometer and the Panoramic Camera reveal a pyroxene‐rich mineralogy, which is also evident in Mössbauer spectra and in normative mineralogy derived from bulk chemistry measured by the alpha particle X‐ray spectrometer. The correspondence of Bounce Rock’s chemical composition with the composition of certain basaltic shergottites, especially Elephant Moraine (EET) 79001 lithology B and Queen Alexandra Range (QUE) 94201, is very close, with only Cl, Fe, and Ti exhibiting deviations. Chemical analyses further demonstrate characteristics typical of Mars such as the Fe/Mn ratio and P concentrations. Possible shock features support the idea that Bounce Rock was ejected from an impact crater, most likely in the Meridiani Planum region. Bopolu crater, 19.3 km in diameter, located 75 km to the southwest could be the source crater. To date, no other rocks of this composition have been encountered by any of the rovers on Mars. The finding of Bounce Rock by the Opportunity rover provides further direct evidence for an origin of basaltic shergottite meteorites from Mars.  相似文献   
3.
Abstract– We used a combination of different analytical techniques to study particle W7190‐D12 using microinfrared spectroscopy, micro‐Raman spectroscopy, and field emission scanning electron microscopy (FESEM) energy dispersive X‐ray spectroscopy (EDS). The particle consists mainly of hematite (α‐Fe2O3) with considerable variations in structural disorder. It further contains amorphous (Na,K)‐bearing Ca,Al‐silicate and organic carbon. Iron‐bearing spherules (<150 nm in diameter) cover the surface of this particle. At local sites of structural disorder at the hematite surface, the hematite spheres were reduced to FeO in the presence of organic carbons forming FeO‐spheres. However, metallic Fe spheres cannot be excluded based on the available data. To the best of our knowledge, this particle is the first detection of such spherules at the surface of a stratospheric dust particle. Although there is no definitive evidence for an extraterrestrial origin of particle W7190‐D12, we suggest that it could be an IDP that had moved away from the asteroid‐forming region of the early solar system into the outer solar system of the accreting Kuiper Belt objects. After it was released from a Jupiter family comet, this particle became part of the zodiacal cloud. Atmospheric entry flash‐heating caused (1) the formation of microenvironments of reduced iron oxide when indigenous carbon materials reacted with hematite covering its surface resulting in the formation of FeO‐spheres and (2) Na‐loss from Na,Al‐plagioclase. The particle of this study, and other similar particles on this collector, may represent a potentially new type of nonchondritic IDPs associated with Jupiter family comets, although an origin in the asteroid belt cannot be ignored.  相似文献   
4.
Abstract— The 40 km wide Araguainha structure in central Brazil is a shallowly eroded impact crater that presents unique insights into the final stages of complex crater formation. The dominant structural features preserved at Araguainha relate directly to the centripetal movement of the target rocks during the collapse of the transient cavity. Slumping of the transient cavity walls resulted in inward‐verging inclined folds and a km‐scale anticline in the outer ring of the structure. The folding stage was followed by radial and concentric faulting, with downward displacement of kilometer‐scale blocks around the crater rim. The central uplift records evidence for km‐scale upward movement of crystalline basement rocks from the transient cavity floor, and lateral moment of sedimentary target rocks detached from the cavity walls. Much of the structural grain in the central uplift relates to structural stacking of km‐scale thrust sheets of sedimentary strata onto the core of crystalline basement rocks. Outward‐plunging radial folds indicate tangential oblate shortening of the strata during the imbrication of the thrust sheets. Each individual sheet records an early stage of folding and thickening due to non‐coaxial strains, shortly before sheet imbrication. We attribute this folding and thickening phase to the kilometer‐scale inward movement of the target strata from the transient cavity walls to the central uplift. The outer parts of the central uplift record additional outward movement of the target rocks, possibly related to the collapse of the central uplift. An inner ring structure at 10–12 km from the crater center marks the extent of the deformation related to the outward movement of the target rocks.  相似文献   
5.
Abstract— The Campos Sales meteorite fell close to the town of Campos Sales in the northeastern Brazilian state of Ceará (7°2′ S, 40°10′ W) on 1991 January 31 at 10:00 P.M. (local time). Several fragments were recovered from an area estimated to be 1 × 3 km. The stone is an ordinary L5 chondrite (Fa25.0 and FS21.6) and is lightly shocked (S1). Metal phases present are kamacite, tetrataenite, and antitaenite. Noble gases He, Ne, Ar, Kr, and Xe have been analyzed in two bulk samples of Campos Sales. All exposure ages based on determination of cosmogenic 3He, 21Ne, 38Ar, 83Kr, and 126Xe abundances and on the cosmogenic 81Kr/83Kr ratio agree well, which suggests no gas loss during cosmic-ray exposure. The cosmic-ray exposure age is 23.3 ± 1.0 Ma, which falls in the range observed for L5 chondrites (20–30 Ma). The gas-retention ages indicate He loss that must have occurred prior to or during ejection from the L-chondrite parent body.  相似文献   
6.
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号