首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
测绘学   4篇
地质学   12篇
  2022年   1篇
  2021年   3篇
  2018年   4篇
  2017年   4篇
  2016年   1篇
  2015年   2篇
  2010年   1篇
排序方式: 共有16条查询结果,搜索用时 328 毫秒
1.
2.
Khanna  Kirti  Martha  Tapas R.  Roy  Priyom  Kumar  K. Vinod 《Landslides》2021,18(6):2295-2296
Landslides - A Correction to this paper has been published: https://doi.org/10.1007/s10346-021-01646-0.  相似文献   
3.
Khanna  Kirti  Martha  Tapas R.  Roy  Priyom  Kumar  K. Vinod 《Landslides》2021,18(6):2281-2294
Landslides - Assessment of the spatial probability of future landslide occurrences for disaster risk reduction is done through landslide susceptibility modelling. In this study, we investigated the...  相似文献   
4.
Martha  Tapas Ranjan  Roy  Priyom  Jain  Nirmala  Khanna  Kirti  Mrinalni  K.  Kumar  K. Vinod  Rao  P. V. N. 《Landslides》2021,18(6):2125-2141
Landslides - India ranks first in the world in terms of fatal landslides. Large vulnerable area (0.42 million km2), high population density and monsoon rainfall make India’s landslide...  相似文献   
5.
6.
High magnitude earthquakes trigger numerous landslides and their occurrences are mainly controlled by terrain parameters. We created an inventory of 15,551 landslides with a total area of 90.2 km2 triggered by the 2015 Mw 7.8 (Gorkha) and Mw 7.3 (Dolakha) earthquakes in Nepal, through interpretation of very high resolution satellite images (e.g. WorldView, Pleiades, Cartosat-1 and 2, Resourcesat-2). Our spatial analysis of landslide occurrences with ground acceleration, slope, lithology and surface defomation indicated ubiquitous control of steep slope on landslides with ground acceleration as the trigger. Spatial distribution of landslides shows increasing frequency away from the Gorkha earthquake epicentre up to 130 km towards east, dropping sharply thereafter, which is an abnormal phenomenon of coseismic landslides. Landslides are laterally concentrated in three zones which matches well with the seismic rupture evolution of Gorkha earthquake, as reported through teleseismic measurements.  相似文献   
7.
New generation high resolution gravity models derived from space-borne gravity data, integrated with land based surveys, have enabled understanding of regional gravity field over regions, which are till date considered to be inaccessible for land surveys, especially in mountainous terrains. In this study, we evaluate two high resolution gravity models EIGEN-6C4 and GO_CONS_GCF_2_TIM_R5 in order to understand its usability in identification of meso-scale regional geological features and lithological boundaries around the Karakoram shear zone, in Leh, India. The EIGEN-6C4 is a “hybrid” model integrating data from space-borne sensors and terrestrial data, whereas GO_CONS_GCF_2_TIM_R5 is a model derived from the latest space-borne GOCE sensor. Bouguer gravity anomaly has been derived for both the models and compared. It is seen that, the GOCE derived model pertains to the regional gravity field of the region and compares well with the regional derivative of the EIGEN-6C4 model. Further, the EIGEN-6C4 has been analyzed using horizontal derivatives (dx, dy), analytical signal (ANS) and tilt derivative (TDR) techniques. These, derived maps are then overlain on published geological map of the area to understand the correlation between sub-surface geology vis a vis gravitational signal. The major and distinct geological signatures as derived from the various derivative maps correlate well with the existing geological map. The source boundaries derived from the TDR map agrees reasonably well with the lithological boundaries. Further, the anomaly and derivative maps from EIGEN-6C4 indicates towards a possible continuation of the Shyok suture zone in the region. Therefore, for the given spatial extent of the area under consideration, the GOCE derived model represents the regional field, whereas the EIGEN-6C4 data and derivatives are of sufficient resolution for understanding the geological variability in and around the Karakoram shear zone.  相似文献   
8.
The Karakoram Shear Zone (KSZ) is a northwest-southeast trending dextral ductile shear zone that has mylonitized the Tangste and Darbuk granitoids of the southern margin of the Asian plate. Kinematic vorticity (Wk) has been estimated in 6 mylonitized Tangste granite samples, using Porphyroclast Hyperbolic Distribution (PHD) and Shear Band (SB) Analyses methods on well-developed quartz and feldspar porphyroclasts, and synthetic and antithetic shear bands respectively to visualize the overall deformation of the KSZ. The PHD and SB analyses yield Wk values ranging from Wk=0.29 to 0.43 and 0.45 to 0.93, respectively, thus indicating distinct pure and simple shear dominant regimes during different stages of the evolution of the KSZ. Strain has essentially been pure shear when southern edge of the Asian plate was initially juxtaposed against the Indian plate around 70 Ma, and changed to simple shear, possibly during the reactivation of this shear zone during 21-13 Ma to produce the shear bands.  相似文献   
9.
We explored the utilization of Landsat-8 Operational Land Imager (OLI) data for mapping of hydrothermal alteration zones. The region in and around the cities of Dungarpur and Udaipur of Rajasthan state in India was selected for this study. The rock types of Dungarpur and Udaipur are serpentinites, talc-carbonate, talc-schist, and quartzite of the Aravalli Supergroup. Hydrothermally altered zones and resultant hydrous minerals play an important role in the genesis of these rocks. We aimed to identify possible locations of hydrothermally altered zones in regional context around Dungarpur and Udaipur using Landsat-8 OLI data. False-color composite maps and band ratios were prepared from Landsat-8 bands. Band ratios such as band 6/band 7 (short-wave infrared 1 (SWIR1)/short wave infrared 2 (SWIR2)), band 4/band 3 (red/green), and band 5/band 6 (near infrared (NIR)/SWIR1) and visual interpretation techniques were used to identify the hydrothermally altered zones. Spectroscopic analyses of field rock samples were done to validate the hydrothermal alteration zones delineated from the analysis of Landsat-8 data. We present the combined results of Landsat-8 and field spectroradiometer analysis which brings out the hydrothermal alteration zones associated with hydrous minerals (antigorite, lizardite, montmorillonite, vermiculite, talc, and saponite). The study demonstrates the utility Landsat-8 OLI (with field spectroradiometer data) in the mapping of hydrothermally altered zones as a key in understanding geological processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号