首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
大气科学   2篇
地球物理   11篇
地质学   9篇
海洋学   2篇
天文学   9篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2006年   1篇
  2004年   2篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
2.
The optically pure d- and l-enantiomers of isovaline (I), which cannot be racemized by ordinary chemical mechanisms involving α-hydrogen removal, and which has been isolated in apparently racemic form from the Murchison meteorite, have been subjected to partial radiolysis by the ionizing radiation from a 3000 Ci 60Co γ-ray source. Both in the anhydrous and hydrated solid states and as solid sodium or hydrochloride salts each enantiomer suffered significant radioracemization of the undestroyed residue during its partial radiolysis. The sodium salt of isovaline in 0.1 M aqueous solution suffered extensive radiolysis with relatively small radiation doses, but showed no detectable radioracemization. The significance of these observations with respect to the primordial enantiomeric composition of the isovaline (and other amino acids) indigenous to meteroties is discussed.  相似文献   
3.
4.
Mutual event observations between the two components of 90 Antiope were carried out in 2007-2008. The pole position was refined to λ0 = 199.5 ± 0.5° and β0 = 39.8 ± 5° in J2000 ecliptic coordinates, leaving intact the physical solution for the components, assimilated to two perfect Roche ellipsoids, and derived after the 2005 mutual event season (Descamps, P., Marchis, F., Michalowski, T., Vachier, F., Colas, F., Berthier, J., Assafin, M., Dunckel, P.B., Polinska, M., Pych, W., Hestroffer, D., Miller, K., Vieira-Martins, R., Birlan, M., Teng-Chuen-Yu, J.-P., Peyrot, A., Payet, B., Dorseuil, J., Léonie, Y., Dijoux, T., 2007. Figure of the double Asteroid 90 Antiope from AO and lightcurves observations. Icarus 187, 482-499). Furthermore, a large-scale geological depression, located on one of the components, was introduced to better match the observed lightcurves. This vast geological feature of about 68 km in diameter, which could be postulated as a bowl-shaped impact crater, is indeed responsible of the photometric asymmetries seen on the “shoulders” of the lightcurves. The bulk density was then recomputed to 1.28 ± 0.04 g cm−3 to take into account this large-scale non-convexity. This giant crater could be the aftermath of a tremendous collision of a 100-km sized proto-Antiope with another Themis family member. This statement is supported by the fact that Antiope is sufficiently porous (∼50%) to survive such an impact without being wholly destroyed. This violent shock would have then imparted enough angular momentum for fissioning of proto-Antiope into two equisized bodies. We calculated that the impactor must have a diameter greater than ∼17 km, for an impact velocity ranging between 1 and 4 km/s. With such a projectile, this event has a substantial 50% probability to have occurred over the age of the Themis family.  相似文献   
5.
We evaluated controls on locations of channel incision, variation in channel evolution pathways and the time required to reconnect incised channels to their historical floodplains in the Walla Walla and Tucannon River basins, northwestern USA. Controls on incision locations are hierarchically nested. A first‐order geological control defines locations of channels prone to incision, and a second‐order control determines which of these channels are incised. Channels prone to incision are reaches with silt‐dominated valley fills, which have sediment source areas dominated by loess deposits and channel slopes less than 0·1(area)?0·45. Among channels prone to incision, channels below a second slope–area threshold (slope = 0·15(area)?0·8) did not incise. Once incised, channels follow two different evolution models. Small, deeply incised channels follow Model I, which is characterized by the absence of a significant widening phase following incision. Widening is limited by accumulation of bank failure deposits at the base of banks, which reduces lateral channel migration. Larger channels follow Model II, in which widening is followed by development of an inset floodplain and aggradation. In contrast to patterns observed elsewhere, we found the widest incised channels upstream of narrower reaches, which reflects a downstream decrease in bed load supply. Based on literature values of floodplain aggradation rates, we estimate recovery times for incised channels (the time required to reconnect to the historical floodplain) between 60 and 275 years. Restoration actions such as allowing modest beaver recolonization can decrease recovery time by 17–33 per cent. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   
6.
Terrane sutures in the Maine Appalachians and adjacent areas are recognized as melange dominated, deformed accretionary prisms of Ordovician age, and as a broad synmetamorphic transcurrent fault zone of probable Late Silurian-Early Devonian age. Although the accretionary prisms are associated with present day aeromagnetic and Bouguer gravity anomalies, they are probably not associated with present day crustal penetrating boundaries. The geology of the accretionary prisms indicates subduction-obduction dominated regimes during which (1) the Gander and Boundary Mountain (Dunnage) terranes amalgamated and (2) the composite Boundary Mountain-Gander terrane accreted to the Laurentian margin. The Penobscottian orogeny produced and deformed the older of the two accretionary prisms. This accretionary prism indicates that the Penobscottian was a continuous or perhaps diachronous event which spanned the late Cambrian to early Late Ordovician. The younger accretionary prism was produced and deformed during the Taconian orogeny during late Middle to early Late Ordovician. Initial deformation of this accretionary prism may have overlapped the waning stages of the Penobscottian. Portions of the Taconian arc locally overlie the Penobscottian accretionary prism. A synmetamorphic fault zone lies within Precambrian(?) to Ordovician(?) bimodal metavolcanic and metapelitic rocks assigned here to the Avalon terrane. This zone is several kilometres wide and is interpreted to be the postsubduction suture between the Avalon and Gander terranes, and may, in part, represent a fossil transform fault system. The fault zone contains phyllonites as well as shear zones which generally record dextral motion. The phyllonites were previously interpreted as a stratigraphic unit, whereas the shear zones span or are contained within mappable compositional units. Formation of and movement along these phyllonites and shear zones ceased before the intrusion of Early Devonian plutons. Not all faults in south-western Maine are related to the suture. Younger dip and/or strike-slip and thrust faults are approximately parallel to, or may lie within, the older shear zones and they complicate the recognition of the older faults.  相似文献   
7.
8.
9.
10.
Semianalytical Computation of Path Lines for Finite-Difference Models   总被引:13,自引:0,他引:13  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号