首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   1篇
地球物理   1篇
地质学   1篇
海洋学   3篇
  2016年   2篇
  2012年   1篇
  2007年   1篇
  2004年   1篇
  2001年   1篇
排序方式: 共有6条查询结果,搜索用时 234 毫秒
1
1.
JGOFS has revealed the importance of marine biological activity to the global carbon cycle. Ecological models are valuable tools for improving our understanding of biogeochemical cycles. Through a series of workshops, the North Pacific Marine Science Organization (PICES) developed NEMURO (North Pacific Ecosystem Model Understanding Regional Oceanography) a model, specifically designed to simulate the lower trophic ecosystem in the North Pacific Ocean. Its ability to simulate vertical fluxes generated by biological activities has not yet been validated. Here compare NEMURO with several other lower trophic level models of the northern North Pacific. The different ecosystem models are each embedded in a common three-dimensional physical model, and the simulated vertical flux of POM and the biomass of phytoplankton are compared. The models compared are: (1) NEMURO, (2) the Kishi and Nakata Model (Kishi et al., 1981), (3) KKYS (Kawamiya et al., 1995, 2000a, 2000b), and (4) the Denman model (Denman and Peña, 2002). With simple NPZD models, it is difficult to describe the production of POM (Particulate Organic Matter) and hence the simulations of vertical flux are poor. However, if the parameters are properly defined, the primary production can be well reproduced, even though none of models we used here includes iron limitation effects. On the whole, NEMURO gave a satisfactory simulation of the vertical flux of POM in the northern North Pacific.  相似文献   
2.
Assessment of Debris-Flow Hazards of Alluvial Fans   总被引:1,自引:0,他引:1  
Okunishi  Kazuo  Suwa  Hiroshi 《Natural Hazards》2001,23(2-3):259-269
A strategy is presented for the assessment ofdebris-flow hazards on alluvial fans on the basis ofa case study carried out on the southern foot of astratovolcano named Mt. Yatsugatake. Transformation ofcommercial forests into a golf course was planned ata corner of the Kikkakezawa fan. The case studyinvolves an assessment of hazards due to debris flowsof different magnitudes and their recurrenceintervals. The environmental conditions for therecurrence of these debris flows are discussed as wellas the extent of the areas affected by them. In orderto generalize the case study, concepts of hazardpotential, hazard and risk for debris flows onalluvial fans are established. Accordingly, the hazardpotential is the possible hazards at any location onan alluvial fan in an indefinitely long time period,which can be assessed on the basis of hydrological andother geoscientific investigations. Hazards associatedwith a particular land use can be evaluated on thebasis of the hazard potential considering the locationand the time period associated with the land use. Riskcan be further assessed considering the life styles inthis land and the social conditions.  相似文献   
3.
We developed a multi-trophic level ecosystem model by coupling physical, biogeochemical-plankton and fish models. An oceanic general circulation model was coupled with a lower trophic level ecosystem model and a Japanese sardine migration model, and applied to the western North Pacific. To investigate the impact of global warming on the pelagic fish ecosystem, such as Japanese sardine, we conducted numerical experiments of growth and migration of Japanese sardine using physical fields for the present day and future with a global warming scenario simulated by a high-resolution climate model. The model results demonstrated possible impacts of global warming on the growth and migration pattern of Japanese sardine. The growths of fish in the current main spawning region under the global warming scenario were significantly slower than those under the present climate scenario. Fish in this region will be at disadvantage for their recruitment under the global warming condition. Prey conditions in the spawning region were projected not to markedly change under global warming condition while water temperature increased. As a result sardine spawning ground was projected to shift towards more north areas. During the feeding migration period in summer, geographical distribution of juveniles fish was projected to shift northwards by one to two degrees latitude under the global warming condition following the change in the distribution of optimal temperature region for feeding. However, this northwards shift of the optimal temperature for feeding was minimized adjacent to the western North Pacific by the cooler water supply by the intensification of the Oyashio.  相似文献   
4.
We investigated the relationship between chlorophyll a (Chl-a) concentrations estimated from satellite observations and the activity of eddies in the Kuroshio Extension region. High (low) area-averaged Chl-a concentrations were frequently observed in the core of cyclonic (anticyclonic) eddies. Such relationships between Chl-a concentrations and eddy cores were not frequently observed in the southern part of the recirculation gyre, and advection of background meridional gradient of Chl-a by eddy-edge currents accounted for Chl-a spatial variability. Decadal-scale changes of Chl-a concentrations around the Kuroshio Extension were strongly affected by eddy activity and transport but not by large-scale near-surface isopycnal heaving. We also found that decadal changes of nutrient concentrations near the main stream could affect Chl-a concentrations in the southern part of the recirculation gyre via southward transport of eddies and mean flow.  相似文献   
5.
6.
We applied a three-dimensional ecosystem-physical coupled model including iron the effect to the Okhotsk Sea. In order to clarify the sources of iron, four dissolved iron compartments, based on the sources of supply, were added to Kawamiya et al.'s [1995, An ecological-physical coupled model applied to Station Papa. Journal of Oceanography, 51, 635-664] model (KKYS) to create our ecosystem model (KKYS-Fe). We hypothesized that four processes supply iron to sea water: atmospheric loadings from Northeastern Asia, input from the Amur River, dissolution from sediments and regeneration by zooplankton and bacteria. We simulated one year, from 1 January 2001 to 31 December 2001, using both KKYS-Fe and KKYS. KKYS could not reproduce the surface nitrate distribution after the spring bloom, whereas KKYS-Fe agreed well with observations in the northwestern Pacific because it includes iron limitation of phytoplankton growth. During the spring bloom, the main source of iron at the sea surface is from the atmosphere. The contribution of riverine iron to the total iron utilized for primary production is small in the Okhotsk Sea. Atmospheric deposition, the iron flux from sediment and regeneration of iron in the water column play important roles in maintaining high primary production in the Okhotsk Sea.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号