首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地球物理   1篇
地质学   3篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 125 毫秒
1
1.
Levy  Yehuda  Shalev  Eyal  Burg  Avihu  Yechieli  Yoseph  Gvirtzman  Haim 《Hydrogeology Journal》2021,29(5):1785-1795

A typical fresh–saline water interface in a coastal aquifer is characterized by saline-water circulation below the interface and freshwater flow above. Both flows are perpendicular to the shoreline. The flow pattern near two separated saline lakes is more complicated. For example, in the Middle East, the Dead Sea northern basin and the evaporation ponds of the Dead Sea Works are adjacent to each other but separated. The northern basin level is dropping by 1.1 m/year and the evaporation ponds’ levels are increasing by 0.2 m/year. The fresh–saline water interface in such situation is numerically simulated. Streamlines parallel or semiparallel to the shoreline are significant. Moreover, the fresh–saline water interface intrudes landward adjacent to the higher saline lake and is pushed lakeward adjacent to the lower saline lake. The simulation results support field observations showing that the interface migrates vertically at a faster rate relative to the changes in the water table and the lake levels.

  相似文献   
2.
To enable quality control of measurement procedures for determinations of Mg isotope amount ratios, expressed as δ26Mg and δ25Mg values, in Earth‐surface studies, the δ26Mg and δ25Mg values of eight reference materials (RMs) were determined by interlaboratory comparison between five laboratories and considering published data, if available. These matrix RMs, including river water SLRS‐5, spring water NIST SRM 1640a, Dead Sea brine DSW‐1, dolomites JDo‐1 and BCS‐CRM 512, limestone BCS‐CRM 513, soil NIST SRM 2709a and vegetation NIST SRM 1515, are representative of a wide range of Earth‐surface materials from low‐temperature environments. The interlaboratory variability, 2s (twice the standard deviation), of all eight RMs ranges from 0.05 to 0.17‰ in δ26Mg. Thus, it is suggested that all these materials are suitable for validation of δ26Mg and δ25Mg determinations in Earth‐surface geochemical studies.  相似文献   
3.
Biased monitoring of fresh water-salt water mixing zone in coastal aquifers   总被引:2,自引:0,他引:2  
In coastal aquifers, significant vertical hydraulic gradients are formed where fresh water and underlying salt water discharge together upward to the seafloor. Monitoring boreholes may act as "short circuits" along these vertical gradients, connecting between the higher and the lower hydraulic head zones. When a sea tide is introduced, the fluctuations of both the water table and the depth of the mixing zone are also biased due to this effect. This problem is intensified in places of long-screen monitoring boreholes, which are common in many places in the world. For example, all approximately 500 boreholes of the fresh water-salt water mixing zone in the coastal aquifer of Israel are installed with 10 to 50 m long screens. We present field measurements of these fluctuations, along with a three-dimensional numerical model. We find that the in-well fluctuation magnitude of the mixing zone is an order of magnitude larger than that in the porous media of the actual aquifer. The primary parameters that affect the magnitude of this bias are the anisotropy of the aquifer conductivity and the borehole hydraulic parameters. With no sea tide, borehole interference is higher for the anisotropic case because the vertical hydraulic gradients are high. When tides are introduced, the amplitude of the mixing zone fluctuation is higher for the isotropic case because the overall effective hydraulic conductivity is greater than the conductivity in the anisotropic case. In the aquifer, the fresh water-salt water mixing zone fluctuations are dampened, and tens of meters inland from the shoreline, the fluctuations are on the order of few centimeters.  相似文献   
4.
Fault zone architecture plays an important role in flow regimes of hydrological systems. Fault zones can act as conduits, barriers, or conduits/barrier systems depending on their spatial architecture. The goal of this study is to determine the fault-zone permeability structure and its effect on the local hydrogeological system in the Dead Sea fault system. Permeability was measured on small-scale outcrop plug samples at four faults along the Dead Sea fault system, and large-scale slug tests in four boreholes, in different parts of the fault, at Yair fault in Israel. The research results show that values in the damage zone are two to five orders of magnitude higher than those of the fault core (~3.5?×?10?10, 1?×?10?15 m2 respectively), resulting in an anisotropic permeability structure for the overall fault zone and preferable flow parallel to the fault. A set of injection tests in the Yair fault damage zone revealed a water-pressure-dependent behavior. The permeability of this zone increases when employing a higher water pressure in the fault fracture-dominated damage zone, due to the reopening of fractures.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号