首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地球物理   4篇
地质学   3篇
自然地理   2篇
  2022年   1篇
  2017年   1篇
  2010年   1篇
  2008年   1篇
  2006年   1篇
  2005年   2篇
  2003年   1篇
  1999年   1篇
排序方式: 共有9条查询结果,搜索用时 29 毫秒
1
1.
A conceptual model with water samples from ten geothermal fields (?smil, Ilg?n (Çavu?cugöl), Tuzlukçu-Ak?ehir, Seydi?ehir and Kavakköy, Hüyük, Ere?li-Akhüyük, Kad?nhan?, Cihanbeyli, Karap?nar and Bey?ehir) in the province of Konya defined the geothermal system. Carbonates, quartzite and marbles of Paleozoic metamorphics are the reservoir rocks and the heating sources are igneous rock intrusions and geothermal gradient. The variable thermal water (CaMgHCO3, CaSO4, NaSO4, CaHCO3, CaNaHCO3, NaCl and CaNaClHCO3) had EC and temperature between 177.8 and 56,100 μS/cm and between 18.3 and 44 °C, respectively. Ca2+ in geothermal fluids are associated with marble and carbonate rocks and the high chloride shows direct connection with deep geothermal system, and prolonged contact with evaporite rocks. Sulphate originates from dissolution of and oxidation of sulphate and sulphur-bearing minerals. The high As, B, F and Mn concentration in some thermal water samples were determined as 85 μg/l, 148.56 mg/l, 3.01 mg/l and 208.13 mg/l, respectively. Reservoir temperatures computed by Na/K geothermometers were between 85.37–158.89 °C for Ak?ehir thermal waters and 58.78–90.45 °C for Ere?li thermal waters. The maximum reservoir temperature of other geothermal waters was 75 °C by the silica geothermometers.  相似文献   
2.
由于印尼苏门答腊-安达曼地震以及由它引起的海啸造成了大量人员伤亡,与其比邻的巽他海沟俯冲带触发地震的可能性引起了真正的关注。我们已经计算了这个区域以及临近区域——苏门答腊直立走滑断层的同震应力分布,发现两个构造上的应力都增加了,从而极大地提高了原已很大的地震危险性。尤其是这个区域发生大的俯冲带地震的可能性增加,  相似文献   
3.
Several independent indicators imply a high probability of a great (M > 8) earthquake rupture of the subduction megathrust under the Mentawai Islands of West Sumatra. The human consequences of such an event depend crucially on its tsunamigenic potential, which in turn depends on unpredictable details of slip distribution on the megathrust and how resulting seafloor movements and the propagating tsunami waves interact with bathymetry. Here we address the forward problem by modelling about 1000 possible complex earthquake ruptures and calculating the seafloor displacements and tsunami wave height distributions that would result from the most likely 100 or so, as judged by reference to paleogeodetic data. Additionally we carry out a systematic study of the importance of the location of maximum slip with respect to the morphology of the fore-arc complex. Our results indicate a generally smaller regional tsunami hazard than was realised in Aceh during the December 2004 event, though more than 20% of simulations result in tsunami wave heights of more than 5 m for the southern Sumatran cities of Padang and Bengkulu. The extreme events in these simulations produce results which are consistent with recent deterministic studies. The study confirms the sensitivity of predicted wave heights to the distribution of slip even for events with similar moment and reproduces Plafker's rule of thumb. Additionally we show that the maximum wave height observed at a single location scales with the magnitude though data for all magnitudes exhibit extreme variability. Finally, we show that for any coastal location in the near field of the earthquake, despite the complexity of the earthquake rupture simulations and the large range of magnitudes modelled, the timing of inundation is constant to first order and the maximum height of the modelled waves is directly proportional to the vertical coseismic displacement experienced at that point. These results may assist in developing tsunami preparedness strategies around the Indian Ocean and in particular along the coasts of western Sumatra.  相似文献   
4.
Eyidogan  Nalbant  Barka  & King 《地学学报》1999,11(1):38-44
The 1924 Pasinler & 1983 Horasan-Narman earthquakes which struck the Erzurum region occurred on the NE–SW-trending Horasan fault zone about 60 km east of Erzurum basin. The inversion of teleseismic seismograms, the aftershock pattern and the surface faulting of the 30 October 1983 ( M s = 6.8) Horasan-Narman earthquake indicate that it had dominantly left-lateral motion. One moderately sized aftershock occurred 8 h after the main event and two others a year later on the NE extension of the fault zone. The aftershock distribution dominantly overlapped with the Horasan fault zone, and the aftershocks also migrated from south-west to north-east within the year following the mainshock. The results obtained from modelling of static stress changes caused by the 1983 earthquake are consistent with the spatial distribution of aftershocks. Macroseismic observations of the 1924 earthquake ( M s = 6.8) indicated that this event occurred on the SW extension of the Horasan fault zone. Static stress modelling of the 1924 earthquake, by using the same input parameters of the 1983 event, has shown that its occurrence increased the stress in the region of the 1983 rupture zone. The static stress changes caused both by the 1924 and the 1983 earthquakes has increased the failure stress at the NE and SW extensions of the Horasan fault zone and in Narman area. Furthermore, the stress has decreased in the vicinity of the Erzurum fault zone, east of the city of Erzurum, the largest city in eastern Turkey, and in the populated Sarikamis area. This might delay the occurrence of a future probable damaging earthquake in these areas.  相似文献   
5.
2009年9月30日,印度尼西亚巴东市发生7.6级地震。之后,印度尼西亚又接连遭受了几次强震袭击,如2009年12月23日6.1级、2010年3月6日7.1级、2010年4月7日7.8级和2010年5月9日7.4级地震。2010年6月16日一天之内,印度尼西亚又接连发生了3次地震,震级分别为6.3级、7.0级和6.3级。2010年2月,由John McCloskey领军的一个科学家团队就2009年9月巴东地震致函英国《自然—地球科学》杂志(Nature Geoscience),题为:The September 2009 Padang Earthquake。信中提出警告:印度尼西亚苏门答腊沿海地区或将发生引发巨大海啸的强烈地震,其灾害程度足以造成与2004年南亚大海啸相匹敌的惨重伤亡,提醒居民要为更加强烈的地震来袭做好准备。为此,"Nature Geoscience"特发表了一篇社论,题为:Earthquakes off Sumatra(见本期译文"苏门答腊近海地震")。下边是John McCloskey等致"Nature Geoscience"的信函译文。  相似文献   
6.
International Journal of Earth Sciences - Earthquake ruptures perturb stress within the surrounding crustal volume and as it is widely accepted now these stress perturbations strongly correlates...  相似文献   
7.
We explore the possible stress triggering relationship of the   M ≥ 6.4  earthquakes that occurred in Kerman Province, southern Iran since 1981. We calculated stress changes due to both coseismic sudden movement in the upper crust and the time-dependent viscous relaxation of the lower crust and/or upper mantle following the event. Four events of   M ≥ 6.4  occurred between 1981 and 2005, on and close to the Gowk fault, show a clear Coulomb stress load to failure relationship. The  2003 M = 6.5  Bam earthquake, however, which occurred approximately 95 km SW of the closest Gowk event, shows a very weak stress relation to preceding earthquakes. The coseismic static stress change at the hypocentre of the Bam earthquake is quite small (∼0.006 bars). The time-dependent post-seismic stress change could be 26 times larger or 7 times lower than that of coseismic static stress alone depending on the choice of viscoelastic crustal model and the effective coefficient of friction. Given the uncertainties in the viscoelastic earth models and the effective coefficient of friction, we cannot confidently conclude that the 2003 Bam event was brought closer to failure through coseismic or post-seismic stress loading. Interestingly, the southern Gowk segment with a similar strike to that of the Bam fault, experienced a stress load of up to 8.3 bars between 1981 and 2003, and is yet to have a damaging earthquake.  相似文献   
8.
The development of fault interaction models has triggered the need for an accurate estimation of seismicity rate changes following the occurrence of an earthquake. Several statistical methods have been developed in the past to serve this purpose, each relying on different assumptions (e.g., stationarity, gaussianity) pertaining to the seismicity process.In this paper we review these various approaches, discuss their limitations, and propose further improvements. The feasibility of mapping robust seismicity rate changes, and more particularly rate decreases (i.e., seismicity shadows), in the first few days of an aftershock sequence, is examined. To this aim, the hypothesis of large numbers of earthquakes, hence the use of Gaussian statistics, as is usually assumed, must be dropped.Finally, we analyse the modulation in seismicity rates following the 1992, June 28 Mw 7.3 Landers earthquake in the region of the 1992, April 22 Mw 6.1 Joshua Tree earthquake. Clear instances of early triggering (i.e., in the first few days) followed by a seismicity quiescence, are observed. This could indicate the existence of two distinct interaction regimes, a first one caused by the destabilisation of active faults by the travelling seismic waves, and a second one due to the remaining static stress perturbation.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号