首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
  国内免费   1篇
地球物理   6篇
地质学   17篇
海洋学   1篇
天文学   11篇
自然地理   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2014年   7篇
  2013年   1篇
  2012年   6篇
  2011年   4篇
  2009年   3篇
  2008年   1篇
  1987年   1篇
排序方式: 共有37条查询结果,搜索用时 15 毫秒
1.
2.
Bedform geometry is widely recognized to be a function of transport stage. Bedform aspect ratio (height/length) increases with transport stage, reaches a maximum, then decreases as bedforms washout to a plane bed. Bedform migration rates are also linked to bedform geometry, in so far as smaller bedforms in coarser sediment tend to migrate faster than larger bedforms in finer sediment. However, how bedform morphology (height, length and shape) and kinematics (translation and deformation) change with transport stage and suspension have not been examined. A series of experiments is presented where initial flow depth and grain size were held constant and the transport stage was varied to produce bedload dominated, mixed‐load dominated and suspended‐load dominated conditions. The results show that the commonly observed pattern in bedform aspect ratio occurs because bedform height increases then decreases with transport stage, against a continuously increasing bedform length. Bedform size variability increased with transport stage, leading to less uniform bedform fields at higher transport stage. Total translation‐related and deformation‐related sediment fluxes all increased with transport stage. However, the relative contribution to the total flux changed. At the bedload dominated stage, translation‐related and deformation‐related flux contributed equally to the total flux. As the transport stage increased, the fraction of the total load contributed by translation increased and the fraction contributed by deformation declined because the bedforms got bigger and moved faster. At the suspended‐load dominated transport stage, the deformation flux increased and the translation flux decreased as a fraction of the total load, approaching one and zero, respectively, as bedforms washed out to a plane bed.  相似文献   
3.
The Haji Abad intrusion is a well-exposed Middle Eocene I-type granodioritc pluton in the Urumieh–Dokhtar magmatic assemblage (UDMA). The major constituents of the investigated rocks are K-feldspar, quartz, plagioclase, pyroxene, and minor Fe–Ti oxide and hornblende. The plagioclase compositions fall in the labradorite, andesine, and oligoclase fields. The amphiboles range in composition from magnesio-hornblende to tremolite–hornblende of the calcic-amphibole group. Most pyroxenes principally plot in the field of diopside. The calculated average pressure of emplacement is 1.9 kbar for the granodioritic rocks, crystallizing at depths of about 6.7 km. The highest pressure estimated from clinopyroxene geobarometry (5 kbar) reflects initial pyroxene crystallization pressure, indicating initial crystallization depth (17.5 km) in the Haji Abad granodiorite. The estimated temperatures using two-feldspar thermometry give an average 724 °C. The calculated average temperature for clinopyroxene crystallization is 1090 °C. The pyroxene temperatures are higher than the estimated temperature by feldspar thermometry, indicating that the pyroxene and feldspar temperatures represent the first and late stages of magmatic crystallization of Haji Abad granodiorite, respectively. Most pyroxenes plot above the line of Fe3+?=?0, indicating they crystallized under relatively high oxygen fugacity or oxidized conditions. Furthermore, the results show that the Middle Eocene granitoids crystallized from magmas with H2O content about 3.2 wt%. The relatively high water content is consistent with the generation environment of HAG rocks in an active continental margin and has allowed the magma to reach shallower crustal levels. The MMEs with ellipsoidal and spherical shapes show igneous microgranular textures and chilled margins, probably indicating the presence of magma mixing. Besides, core to rim compositional oscillations (An and FeO) for the plagioclase crystals serve as robust evidence to support magma mixing. The studied amphiboles and pyroxenes are grouped in the subalkaline fields that are consistent with crystallization from I-type calc-alkaine magma in the subduction environment related to active continental margin. Mineral chemistry data indicate that Haji Abad granodiorites were generated in an orogenic belt related to the volcanic arc setting consistent with the subduction of Neo-Tethyan oceanic crust beneath the central Iranian microcontinent.  相似文献   
4.
Fourier spectrum amplitudes of horizontal and vertical earthquake accelerations recorded at the foundation levels of 57 buildings in the Los Angeles metropolitan area have been used to study the dependence of spectral amplitudes on the building foundation sizes. Comparison of these amplitudes with those predicted by empirical models for scaling ‘free field’ Fourier amplitude spectra does not indicate any significant dependence of the spectral amplitudes on the size of the foundation. Third degree polynomials have been employed to smooth the spectra of the accelerations recorded inside the buildings and their coefficients have been examined as functions of the foundation plan dimensions. These results also indicate no significant dependence of the spectral amplitudes on the foundation dimensions. A qualitative analysis of the spectral amplitudes for possible effects caused by the phenomena associated with soil-structure interaction indicates that the Fourier spectra of the recorded accelerations may experience some amplification as the relative ‘density’ of the foundation-structure system increases.  相似文献   
5.
Properties of plasma expansion that propagates in an electron-positron-ion dense plasma are investigated. Suitable hydrodynamic equations for the ions and ultrarelativistic degenerate electrons and positrons are used. Using self-similar transformation, the basic set of nonlinear equations is solved numerically. Typical values of white dwarf stars are used to estimate the behavior of the ion number density and ion fluid velocity. The positive ions are found to initially slowly escape with high velocity when the ion-to-electron density ratio increases. For higher values of the electron number density, the self-similar solution validity domain decreases. The relevance of the results to white dwarf expansion and collapse is highlight.  相似文献   
6.
Properties of dust-acoustic solitary waves in a warm dusty plasma are analyzed by using the hydrodynamic model for massive dust grains, electrons, ions, and streaming ion beam. For this purpose, Korteweg-de Vries (KdV) equation for the first-order perturbed potential and linear inhomogeneous KdV-type equation for the second-order perturbed potential have been derived and their analytical solutions are presented. In order to show the characteristics of the dust-acoustic solitary waves are influenced by the plasma parameters, the relevant numerical analysis of the KdV and linear inhomogeneous KdV-type equations are obtained. The dust-acoustic solitary waves, as predicted here, may be associated with the nonlinear structures caused by the interaction of polar jets with the interstellar medium, which is known as Herbig-Haro objects.  相似文献   
7.
Soil shear wave velocity has been recognized as a governing parameter in the assessment of the seismic response of slopes. The spatial variability of soil shear wave velocity can influence the seismic response of sliding mass and seismic displacements. However, most analyses of sliding mass response have been carried out by deterministic models. This paper stochastically investigates the effect of random heterogeneity of shear wave velocity of soil on the dynamic response of sliding mass using the correlation matrix decomposition method and Monte Carlo simulation(MCS). The software FLAC 7.0 along with a Matlab code has been utilized for this purpose. The influence of statistical parameters on the seismic response of sliding mass and seismic displacements in earth slopes with different inclinations and stiffnesses subject to various earthquake shakings was investigated. The results indicated that, in general, the random heterogeneity of soil shear modulus can have a notable impact on the sliding mass response and that neglecting this phenomenon could lead to underestimation of sliding deformations.  相似文献   
8.
Geostatistical optimization in designing infill boreholes is an important cost-effective approach in increasing the accuracy of the tonnage and grade of an ore deposit. In this research, a new approach is proposed to design the optimum infill directional boreholes. In the proposed approach, the Kriging estimation variance is considered as the objective function and the number and properties of the optimum boreholes are estimated to minimize the objective function. The optimization procedure is implemented by Particle Swarm Optimization (PSO) algorithm. Range of the spatial and directional properties of new boreholes is determined by considering the primary information of the mineralization and administrative constraint of drilling. Then, the PSO algorithm is iteratively applied, and in each iteration, the variation of the estimated Kriging variance after drilling the new boreholes is determined and properties of the new boreholes are updated. The iterative procedure of the algorithm is continued until minimum Kriging variance is satisfied. The approach was applied to the Dalli Cu-Au porphyry deposit in Iran and three new infill directional boreholes were designed by considering six earlier boreholes from the preliminary exploration stage. New optimum boreholes were located where less information from the preliminary exploration stage exists and the highest variance is considered. Two new boreholes are near to vertical (78°) and the third is an inclined with 55° dip. By drilling these three new boreholes, the estimated grade model could be upgraded by 20%. For simplicity, quickness and the ability to search for the required numbers and specifications of a group of directional boreholes in a 3D environment are the most advantages aspects of the proposed approach.  相似文献   
9.
Nonlinear electrostatic solitary and shock excitations in electron-depleted electronegative dusty plasma with two-negative ions are considered. Excitations properties and formation conditions are clearly explained. The relevancy of this investigation to space observations and laboratory experiments is pointed out.  相似文献   
10.
In the present research, the removal of lead(II) and copper(II) from aqueous solutions is studied, using SnO2 nanowires as new adsorbent on solid-phase extraction disk and compared with pine core and buttonwood as biosorbents. Batch adsorption experiments were performed as a function of pH, adsorption time, solute concentration and adsorbent dose for biosorbents. Also, the pH, transfer rate of solution and metal concentration were selected as experimental parameters for the removal of heavy metals by SnO2 nanowires. All of the parameters were optimized by experimental design method for sorbents. The experimental equilibrium adsorption data are tested for the Langmuir and Freundlich equations. Results indicate the following order to fit the isotherms: Langmuir > Freundlich, in case of lead and copper ions. The removal of Cu(II) and Pb(II) was performed by selected sorbents in the presence of interferences ions. This led to no remarkable decrease in the removal efficiency of SnO2 nanowires. Using the SnO2 nanowires in the wastewater treatment indicated 96.8 and 85.28% removal efficiency in only 7 min for Pb(II) and Cu(II), respectively. SnO2 nanowires were found as reusable sorbent. Therefore, SnO2 nanowires have a good potential for application in environmental protection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号