首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   0篇
大气科学   1篇
地球物理   24篇
地质学   25篇
海洋学   7篇
天文学   16篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2018年   5篇
  2017年   2篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   8篇
  2008年   3篇
  2007年   6篇
  2006年   7篇
  2005年   4篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  1998年   1篇
  1997年   1篇
  1983年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 652 毫秒
1.
Moroz  L. V.  Baratta  G.  Distefano  E.  Strazzulla  G.  Starukhina  L. V.  Dotto  E.  Barucci  M. A. 《Earth, Moon, and Planets》2003,92(1-4):279-289
Trans-Neptunian Objects (TNOs) and Centaurs show remarkable colour variationsin the visual and near-infrared spectral regions. Surface alteration processes such asspace weathering (e.g., bombardment with ions) and impact resurfacingmay play an important role in the colour diversity of such bodies. Ion irradiation ofhydrocarbon ices and their mixtures with water ice transforms neutral (grey) surfacecolours of ices to red and further to grey. Along with the ices, TNOs and Centaursprobably contain complex carbonaceous compounds, in particular, complexhydrocarbons. Unlike ices, such refractory organic materials have originally lowvisual albedos and red colours in the visible and near-infrared ranges. Here wepresent the first results of ion irradiation experiments on asphaltite. Asphaltite isa natural complex hydrocarbon material. The reflectance spectra of asphaltite inthe 0.4–0.8 μm range have been recorded before irradiation and after eachirradiation step. We demonstrate that irradiation of this red dark material with30 keV H+ and 15 keV N+ ions gradually transforms its colour from redto grey as a result of carbonization. A moderate increase in the visual albedo hasbeen observed. These results may imply that the surfaces of primitive red objectsoptically dominated by complex refractory organics may show a similar spaceweathering trend. Our laboratory results were compared with published coloursof TNOs and Centaurs. A broad variety of spectral colours observed for TNOs andCentaurs may be reproduced by various spectra of irradiated organics correspondingto different ion fluences. However, such objects probably also contain ices and silicatecomponents which show different space weathering trends. This fact, together with alack of information about albedos, may explain difficulties to reveal correlations between surface colours within TNO and Centaur populations and their other properties, such as absolute magnitudes and orbital parameters.  相似文献   
2.
 The heat capacity of paranatrolite and tetranatrolite with a disordered distribution of Al and Si atoms has been measured in the temperature range of 6–309 K using the adiabatic calorimetry technique. The composition of the samples is represented with the formula (Na1.90K0.22Ca0.06)[Al2.24Si2.76O10nH2O, where n=3.10 for paranatrolite and n=2.31 for tetranatrolite. For both zeolites, thermodynamic functions (vibrational entropy, enthalpy, and free energy function) have been calculated. At T=298.15 K, the values of the heat capacity and entropy are 425.1 ± 0.8 and 419.1 ±0.8 J K−1 mol−1 for paranatrolite and 381.0 ± 0.7 and 383.2 ± 0.7 J K−1 mol−1 for tetranatrolite. Thermodynamic functions for tetranatrolite and paranatrolite with compositions corrected for the amount of extraframework cations and water molecules have also been calculated. The calculation for tetranatrolite with two water molecules and two extraframework cations per formula yields: C p (298.15)=359.1 J K−1 mol−1, S(298.15) −S(0)=362.8 J K−1 mol−1. Comparing these values with the literature data for the (Al,Si)-ordered natrolite, we can conclude that the order in tetrahedral atoms does not affect the heat capacity. The analysis of derivatives dC/dT for natrolite, paranatrolite, and tetranatrolite has indicated that the water- cations subsystem within the highly hydrated zeolite may become unstable at temperatures above 200 K. Received: 30 July 2001 / Accepted: 15 November 2001  相似文献   
3.
Moroz  Yu. F.  Loginov  V. A. 《Doklady Earth Sciences》2018,482(2):1370-1374

The methods and results of magnetotelluric sounding in the range of 0.0001–1000 s and more with the use small portable magnetotelluric stations are considered. Data on the distribution of electrical conductivity at depths beneath the Avacha–Koryak zone of contemporary volcanism are obtained. The obtained data are interpreted using the modern techniques and methods.

  相似文献   
4.
Manifestations of fluids and deformations in the sedimentary cover, which are both factors of brightening (blanking anomalies) in seismoacoustic records, in the equatorial segment of the Atlantic coincide with the sublatitudinal zones of the activated passive parts of transform faults and with zones of lower gravity anomalies and higher values of remnant magnetization, which form as a result of serpentinization. The cause-and-effect sequence of intraplate phenomena includes: the contrasting geodynamic state → horizontal movements that form macrofractures → water supply to the upper mantle → serpentinization of rocks in the upper mantle → deformations associated with vertical uplift of basement and sedimentary cover blocks, coupled with fluid generation → and fluid accumulation in the sedimentary cover, accompanied by the formation of anomalies in seismoacoustic records. Based on the seismic data, we have identified imbricate-thrust deformations, diapir structures, stamp folds, and positive and negative flower structures, indicating the presence of strike-slip faults in the passive parts of transform faults. The general spatial distribution of deformation structures shows their concentration in cold mantle zones. Correlative comparison of the structural characteristics of deformations shows the direct relationship between the heights of structures and the development of serpentinization processes. As per the age of the basement, deformations range from 27–38 to 43–53 Ma; a quite thick sedimentary cover makes it possible to reveal them based on the characteristic types of seismoacoustic records. The formation of the Antilles arc ca. 10 Ma ago affected the equatorial segment of the Atlantic; it formed kink bands where lithospheric blocks underwent displacements with counterclockwise rotations, deformations related to compression and vertical uplift of crustal fragments, and local extension that favored degassing of endogenous fluids. Sublatitudinally oriented imbricate-thrust deformations with different vergences indicate irregularity and alternating strike-slip directions as blocks between fractures were laterally influenced.  相似文献   
5.
The seismoelectric effects of the first and second kinds of oil and gas reservoir rocks are studied in three geological regions. Rock samples were taken from deep borehole cores of terrigenous and carbonate composition. Measurements were made in the ultrasound range (100–200 kHz) and at a frequency of 300 Hz. It is shown that the relationship between the porosity coefficient and the intensity of the second-kind seismoelectric effect is the same for terrigenous reservoir rocks in the Saratov Zavolzh’e region, an area of Western Siberia, and the Dnieper-Donets basin. An anomalously strong seismoelectric effect of the first kind (a vibration-induced change in the electrical resistance) is discovered for carbonate reservoir rocks of the Zavolzh’e region.  相似文献   
6.
Atmospheric aerosols play an important role in forming the Martian climate. However, the basic physical properties of the Martian aerosols are still poorly known; there are many contradictions in their estimates. We present an analytical overview of the published results and potentialities of various methods. We consider mineral dust. Zonally averaged data obtained from mapping IR instruments (TES and IRTM) give the optical thickness of mineral aerosols 9 = 0.05–0.1 in the 9-m band for quite atmospheric conditions. There is a problem of comparing these estimates with those obtained in the visible spectral range. We suggest that the commonly used ratio vis/9 >2 depends on the interpretation and it may actually be smaller. The ratio vis/9 1 is in better agreement with the IRIS data (materials like montmorillonite). If we assume that vis/9 = 1 and take into account the nonspherical particle shape, then the interpretation of ground-based integrated polarimetric observations ( < 0.04) can be reconciled with IR measurements from the orbit. However, for thin layers, the sensitivity of both methods to the optical thickness is poorly understood: on the one hand, polarimetry depends on the cloud cover and, on the other hand, the interpretation of IR measurements requires that the atmospheric temperature profile and the surface temperature and emissivity be precisely known. For quite atmospheric conditions, the local optical-thickness estimates obtained by the Bouguer–Lambert–Beer method and from the sky brightness measured from Viking 1 and 2 and Mars Pathfinder landers are much larger: = 0.3–0.6. Estimates of the contrasts in images from theVikingorbiters yield the same values. Thus, there is still a factor of 3 to 10 difference between different groups of optical-thickness estimates for the quiet atmosphere. This difference is probably explained by the contribution of condensation clouds and/or by local/time variations.  相似文献   
7.
Ananiev  R. A.  Dmitrevsky  N. N.  Roslyakov  A. G.  Chernykh  D. V.  Moroz  E. A.  Zarayskaya  Y. A.  Semiletov  I. P. 《Oceanology》2022,62(1):127-132
Oceanology - The emission of natural gas from the seafloor to the surface in shelf areas of the Arctic seas is of increasing interest among researchers. Recently, various types of acoustic...  相似文献   
8.
The processes of the solar radiation extinction in deep layers of the Venus atmosphere in a wavelength range from 0.44 to 0.66 µm have been considered. The spectra of the solar radiation scattered in the atmosphere of Venus at various altitudes above the planetary surface measured by the Venera-11 entry probe in December 1978 are used as observational data. The problem of the data analysis is solved by selecting an atmospheric model; the discrete-ordinate method is applied in calculations. For the altitude interval from 2–10 km to 36 km, the altitude and spectral dependencies of the volume coefficient of true absorption have been obtained. At altitudes of 3–19 km, the spectral dependence is close to the wavelength dependence of the absorption cross section of S3 molecules, whence it follows that the mixing ratio of this sulfur allotrope increases with altitude from 0.03 to 0.1 ppbv.__________Translated from Astronomicheskii Vestnik, Vol. 39, No. 4, 2005, pp. 304–320.Original Russian Text Copyright © 2005 by Maiorov, Ignat’ev, Moroz, Zasova, Moshkin, Khatuntsev, Ekonomov.  相似文献   
9.
To simulate the formation of impact glasses on Mars, an analogue of martian bright soil (altered volcanic soil JSC Mars-1) was melted at relevant oxygen fugacities using a pulsed laser and a resistance furnace. Reduction of Fe3+ to Fe2+ and in some cases formation of nanophase Fe0 in the glasses were documented by Mössbauer spectroscopy and TEM studies. Reflectance spectra for several size fractions of the JSC Mars-1 sample and the glasses were acquired between 0.3 and 25 μm. The glasses produced from the JSC Mars-1 soil show significant spectral variability depending on the method of production and the cooling rate. In general, they are dark and less red in the visible compared to the original JSC Mars-1 soil. Their spectra do not have absorption bands due to bound water and structural OH, have positive spectral slopes in the near-infrared range, and show two broad bands centered near 1.05 and 1.9 μm, typical of glasses rich in ferrous iron. The latter bands and low albedo partly mimic the spectral properties of martian dark regions, and may easily be confused with mafic materials containing olivine and low-Ca pyroxene. Due to their disordered structures and vesicular textures, the glasses show relatively weak absorption features from the visible to the thermal infrared. These weak absorption bands may be masked by the stronger bands of mafic minerals. Positive near-infrared spectral slopes typical of fresh iron-bearing impact or volcanic glasses may be masked either by oxide/dust coatings or by aerosols in the Mars' atmosphere. As a result, impact glasses may be present on the surface of Mars in significant quantities that have been either misidentified as other phases or masked by phases with stronger infrared features. Spectrometers with sufficient spatial resolution and wavelength coverage may detect impact glasses at certain locations, e.g., in the vicinity of fresh impact craters. Such dark materials are usually interpreted as accumulations of mafic volcanic sand, but the possibility of an impact melt origin of such materials also should be considered. In addition, our data suggest that high contents of feldspars or zeolites are not necessary to produce the transparency feature at 12.1 μm typical of martian dust spectra.  相似文献   
10.
The key features in the distribution of geoelectric and velocity heterogeneities in the Earth’s crust and the upper mantle of Kamchatka are considered according to the data of deep magnetotelluric sounding and seismotomography. Their possible origin is discussed based on the combined analysis of electric conductivity and seismic velocity anomalies. The geoelectric model contains a crustal conducting layer at a depth of 15–35 km extending along the middle part of Kamchatka. In the Central Kamchatka volcanic belt, the layer is close to the ground surface to a depth of 15–20 km, where its conductivity considerably increases. Horizontal conducting zones with a width of up to 50 km extending into the Pacific Ocean are revealed in the lithosphere of eastern Kamchatka. The large centers of current volcanism are confined to the projections of the horizontal zones. The upper mantle contains an asthenospheric conducting layer that rises from a depth of 150 km in western Kamchatka to a depth of 70–80 km beneath the zone of current volcanism. According to the seismotographic data, the low- and high-seismic-velocity anomalies of P-waves that reflect lateral stratification, which includes the crust, the rigid part of the upper mantle, the asthenospheric layer in a depth range of ~70–130 km, and a high-velocity layer confined to a seismofocal zone, are identified on the vertical and horizontal cross sections of eastern Kamchatka. The cross sections show low-velocity anomalies, which, in the majority of cases, correspond to the high-conductivity anomalies caused by the increased porosity of rocks saturated with liquid fluids. However, there are also differences that are related to the electric conductivity of rocks depending on pore channels filled with liquid fluids making throughways for electric current. The seismic velocity depends, to a great extent, on the total porosity of the rocks, which also includes isolated and dead-end channels that can be filled with liquid fluids that do not contribute to the electric-current transfer. The data on electric conductivity and seismic velocity are used to estimate the porosity of the rocks in the anomalous zones of the Earth’s crust and the upper mantle that are characterized by high electric conductivity and low seismic velocity. This estimate serves as the basis for identifying the zones of partial melting in the lithosphere and the asthenosphere feeding the active volcanoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号