首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
大气科学   5篇
地球物理   1篇
地质学   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   2篇
  2010年   1篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 890 毫秒
1
1.
Igri  P. Moudi  Tanessong  Roméo S.  Vondou  D. A.  Panda  Jagabandhu  Garba  Adamou  Mkankam  F. Kamga  Kamga  A. 《Natural Hazards》2018,93(3):1565-1587
Natural Hazards - For numerical weather prediction over a particular region, it is important to know the best combination of physical parameterizations available in the considered modelling frame...  相似文献   
2.
This paper examines the connection between the probability of precipitation and forecast amounts from Weather Research and Forecasting (WRF) model runs over Central and West Africa. A one season period (June–September 2010) was used to investigate the quantitative precipitation forecast–probability relationship. The predictive capability of this relationship was then tested on an independent sample of data (June–September 2011); 2010 and 2011 were wet and dry years, respectively. The results show that rainfall is less likely to occur in those areas where the model indicates no precipitation than it is elsewhere in the domain. Rainfall is more likely to occur in those regions where precipitation is predicted, especially where the predicted precipitation amounts are largest. The probabilities of rainfall forecasts based on this relationship are found to possess skill as measured by relative operating characteristic curves, reliability diagrams, and Brier skill scores. Skillful forecasts from the technique exist throughout 24-h periods for which WRF output was available. The results suggest that this forecasting tool might assist forecasters throughout the season in a wide variety of weather events and not only in areas of difficult-to-forecast convective systems.  相似文献   
3.
Summary  Four coupled atmosphere-ocean general circulation models were examined for the ability of their control runs to simulate present climate given present forcings. The area of study is mainly Cameroon and some of its surrounding areas (0–25° E, 5° S-30° N). These models are from the UK Meteorological Office Hadley Centre (HadCM2), the German Max-Planck-Institut für Meteorologie (ECHAM4), the Canadian Centre for Climate Modelling and Analysis (CGCM1) and the Australian Commonwealth Science and Industrial Research Organisation (CSIRO-Mk2). The ability of the models to reproduce the observed spatial and temporal patterns was studied. ECHAM4 and HadCM2 were found to reproduce the spatial pattern well, with a correlation of more than 90%. They also simulated the main annual features of both temperature and rainfall. The CSIRO-Mk2 model was slightly less successful and the CGCM1 had the worst results for the area, especially as concern rainfall. In view of these results, ECHAM4 and HADCM2 were used to evaluate projected changes in rainfall and temperature resulting from increased concentration of greenhouse gases in the atmosphere for the 30 year period 2040 to 2070. Received February 15, 1999/Revised March 10, 2000  相似文献   
4.
In this study, the International Center for Theoretical Physics Regional Climate Model version 3 (RegCM3) was used to investigate the sensitivity of the simulation of the West African monsoon using four different cumulus and closures parameterization schemes of Anthes Kuo (AK), Grell and Fristish Chappell (GFC), Grell and Arakawa Schubert (GAS), and MIT-Emmanuel (EM) while maintaining other physical packages unchanged. The contrasting monsoon years of 1993 and 1999, which were dry and wet years, respectively, were simulated. The model was integrated from a period of 5 months, starting from May 1 to September 30 of each year using the European Centre for Medium-Range-Weather Forecast (ECMWF) Reanalysis data (ERA40) as input boundary conditions. The 6-hourly reanalysis data were used to provide the lateral boundary conditions, and the observed weekly Reynolds Sea Surface Temperature interpolated to 6 h was used as the lower boundary forcing. The results show that in West Africa, monsoon precipitations are sensitive to the choice of cumulus parameterization and closure schemes. None of the schemes is able to simulate the monsoon rainfall accurately, and furthermore, there is little difference in behavior among schemes between dry and wet years. The spatial features of precipitation are not identical among schemes, although they all show a northward shift of the rain bands, giving a very wet Sahel and dry Guinean Coast. The GFC and EM schemes are able to capture the diurnal cycle of precipitation and the zonal averages of stratiform rain fractions as observed in the Tropical Rainfall Measuring Mission (TRMM), although they overestimated rainfall amounts. The most important deficiencies, however, cannot be attributed to the schemes. In particular, the northward shift of both the rain band and the AEJ in RegCM3 is the result of unrealistic soil moisture resulting from the way albedo is parameterized, leading to an excessive northward penetration of monsoon flow. A sensitivity study showed that an adjustment of initial albedo values over the Sahel improved the simulation, and in particular the position of rain bands and of the AEJ.  相似文献   
5.
6.
7.
Using radiosonde dataset from 15 weather stations over West Africa, this paper investigates the contribution of the couple convection-static stability in the framework of the African monsoon multidisciplinary analyses Special Observing Period 3 (AMMA SOP3) experiment. Within this 31-day period, the boundary layer-winds depictions have revealed the West African monsoon’s (WAM) depth (around 1500 m) is not thick enough to trigger intense convection. However, the midlevel winds distribution (700–600 hPa) has shown the average African easterly jet core strength (15 m s?1) is sufficient to allow the development of African easterly waves (AEWs) necessary for squall lines activities. In return, in the upper levels (200–100 hPa), the speed (below 18 m s?1) of the mean Tropical easterly jet (TEJ) core cannot favor midlevel updrafts. The free tropospheric humidity (FTH) depiction has indicated convective events are more likely in the western Sahel where the highest FTH (FTH >50 %) are recorded. The static stability analysis has testified that convection is stronger in the semi-arid (SA) area during night time (0000 GMT). However, convective activities are inhibited in the wet equatorial (WE) region due to mean low-level stability. We used METEOSAT Second Generation (MSG) infrared (IR10.8) imagery of the 8th September 2006 to confirm that result. Furthermore, a maximum midtropospheric static stability combined with maximum relative humidity (RH) was found on the fringe of the Saharan air layer’s (SAL) top (altitude around 5.3 km) in the WE region.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号