首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地质学   12篇
天文学   1篇
自然地理   2篇
  2018年   1篇
  2013年   1篇
  2011年   2篇
  2010年   3篇
  2008年   1篇
  2006年   1篇
  2002年   1篇
  1995年   1篇
  1992年   1篇
  1984年   1篇
  1981年   1篇
  1966年   1篇
排序方式: 共有15条查询结果,搜索用时 46 毫秒
1.
Molybdenum (Mo) isotope studies in black shales can provide information about the redox evolution of the Earth’s oceans, provided the isotopic consequences of Mo burial into its major sinks are well understood. Previous applications of the Mo isotope paleo-ocean redox proxy assumed quantitative scavenging of Mo when buried into sulfidic sediments. This paper contains the first complete suite of Mo isotope fractionation observations in a sulfidic water column and sediment system, the meromictic Lake Cadagno, Switzerland, a small alpine lake with a pronounced oxygen-sulfide transition reaching up to H2S ∼ 200 μM in the bottom waters (or about 300 μM total sulfide: ΣS2− = H2S + HS + S2−). We find that Mo behaves conservatively in the oxic zone and non-conservatively in the sulfidic zone, where dissolved Mo concentrations decrease from 14 nM to 2-8 nM across this transition. Dissolved Mo in the upper oxic waters has a δ98Mooxic = 0.9 ± 0.1‰, which matches that of the riverine input, δ98Moriver = 0.9 ± 0.1‰. In the deeper sulfidic waters, a subaquatic source delivers Mo at 1.55 ± 0.1‰, but the dissolved Mo is even heavier at δ98Mosulfidic = 1.8‰. Sediment traps in the sulfidic zone of the lake collect particles increasingly enriched in Mo with depth, with δ98Mo values significantly fractionated at −0.8‰ to −1.2‰ both near the chemocline and in the deepest trap. Suspended particulates in the sulfidic waters carry lighter Mo than the ambient dissolved Mo pool by ∼0.3-1.5‰. Sedimentary Mo concentrations correlate with total organic carbon and yield Mo levels which are two orders of magnitude higher than typical crustal values found in rocks from the catchment area. Solid-phase Mo in the sediment shows a slightly positive δ98Mo trend with depth, from δ98Mo = 1.2‰ to 1.4‰ while the pore waters show dramatic enrichments of Mo (>2000 nM) with a relatively light isotope signature of δ98Mo = 0.9-1.0‰.These data are explained if Mo is converted to particle-reactive oxythiomolybdates in the sulfidic waters and is fractionated during removal from solution onto particles. Isotope fractionation is expressed in the water column, despite the high sulfide concentrations, because the rate of Mo removal is fast compared to the slow reaction kinetics of thiomolybdate formation. However, elemental and isotopic mass balances show that Mo is indeed quantitatively removed to the lake sediments and thus the isotopic composition of the sediments reflects sources to the sulfidic water. This efficient Mo drawdown is expected to occur in settings where H2S is very much in excess over Mo or in a restricted setting where the water renewal rate is slow compared to the Mo burial rate. We present a model for the Mo isotope fractionation in sulfidic systems associated with the slow reaction kinetics and conclude that quantitative removal will occur in highly sulfidic and restricted marine systems.  相似文献   
2.
Geographers have increasingly adopted community-based learning and research into their teaching and scholarly activities since Bunge and Harvey called for an applied public geography that is both useful and challenges societal inequalities. With few exceptions, however, there has been little discussion of methods for measuring this work. Many published assessments focus on the impacts of projects on students but overlook the impacts on community partners. Impacts on faculty and the larger university community are also often ignored. This article discusses literature on the evaluation of community–university research and service learning from a critical perspective. A discussion of service learning and community-based research (CBR) projects at two Chicago universities, DePaul and Chicago State, is presented. In both cases challenges were encountered to achieve full evaluation of projects, yet both included an evaluation of university and community partners that allowed for assessment of the projects’ value to all partners.  相似文献   
3.
Chemical interaction between tholeiitic magmas of the East Greenland Tertiary macrodike complex and anatectic melts of the Precambrian basement produced a wide range of hybrid magmas. Field evidence indicates that, although coexisting magmas were stirred, mechanical mixing only occurred to a limited extent before segregation of magmas into a stratified system. The initial 87Sr/86Sr and 143Nd/144Nd isotope ratios for hybrid compositions fall between those of the mafic and felsic end-members. However, the covariation of these isotope ratios differs from that expected of bulk mixing. Major- and trace-element distributions in hybrid magmas are also inconsistent with simple mixing, as well as with fractional crystallization coupled with bulk assimilation (AFC) involving reasonable end-members of the macrodike-crust system. Rather, the chemical and isotopic modification of mafic and felsic magmas of the macrodike complex appears to have been controlled fundamentally by interdiffusion of silicate liquid species during mingling and buoyant roofward segregation of crust-derived granophyres. The relationships among juxtaposed hybrid magmas of the Miki Fjord macrodike are shown to be consistent with expectations of selective diffusional exchange based on available experimental interdiffusion data for silicate liquids. Comparison between these hybrid compositions and rocks from the felsic series of the Vandfaldsdalen macrodike suggest that the latter compositions were affected by a similar opensystem process operating presumably during the transient development of the felsic cap. Once hybrid magmas ponded at the roof of the intrusion they effectively were isolated from further exchange.  相似文献   
4.
5.
The chromite deposits in the Archean Nuggihalli schist belt are part of a layered ultramafic–mafic sequence within the Western Dharwar Craton of the Indian shield. The 3.1-Ga ultramafic–mafic units occur as sill-like intrusions within the volcano-sedimentary sequences of the Nuggihalli greenstone belt that are surrounded by the tonalite–trondhjemite–granodiorite (TTG) suite of rocks. The entire succession is exposed in the Tagdur mining district. The succession has been divided into the lower and the upper ultramafic units, separated by a middle gabbro unit. The ultramafic units comprise of deformed massive chromitite bodies that are hosted within chromite-bearing serpentinites. The chromitite bodies occur in the form of pods and elongated lenses (~60–500 m by ~15 m). Detailed electron microprobe studies reveal intense compositional variability of the chromite grains in silicate-rich chromitite (~50% modal chromite) and serpentinite (~2% modal chromite) throughout the entire ultramafic sequence. However, the primary composition of chromite is preserved in the massive chromitites (~60–75% modal chromite) from the Byrapur and the Bhaktarhalli mining district of the Nuggihalli schist belt. These are characterized by high Cr-ratios (Cr/(Cr + Al) = 0.78–0.86) and moderate Mg-ratios (Mg/(Mg + Fe2+) = 0.38–0.58). The compositional variability occurs due to sub-solidus re-equilibration in the accessory chromite in the serpentinite (Mg-ratio = 0.01–0.38; Cr-ratio = 0.02–0.99) and in silicate-rich chromitite (Mg-ratio = 0.06–0.48; Cr-ratio = 0.60–0.99). In the massive chromitites, the sub-solidus re-equilibration for chromite is less or absent. However, the re-equilibration is prominent in the co-existing interstitial and included olivine (Fo96–98) and pyroxene grains (Mg-numbers = 97–99). Compositional variability on the scale of a single chromite grain occurs in the form of zoning, and it is common in the accessory chromite grains in serpentinite and in the altered grains in chromitite. In the zoned grains, the composition of the core is modified and the rim is ferritchromit. In general, ferritchromit occurs as irregular patches along the grain boundaries and fractures of the zoned grains. In this case, ferritchromit formation is not very extensive. This indicates a secondary low temperature hydrothermal origin of ferritchromit during serpentinization. In some occurrences, the ferritchromit rim is very well developed, and only a small relict core appears to remain in the chromite grain. However, complete alteration of the chromite grains to ferritchromit without any remnant core is also present. The regular, well-developed and continuous occurrence of ferritchromit rims around the chromite grain boundaries, the complete alteration of the chromite grains and the modification of the core composition indicate the alteration in the Nuggihalli schist belt to be intense, pervasive and affected by later low-grade metamorphism. The primary composition of chromite has been used to compute the nature of the parental melt. The parental melt calculations indicate derivation from a high-Mg komatiitic basalt that is similar to the composition of the komatiitic rocks reported from the greenstone sequences of the Western Dharwar Craton. Tectonic discrimination diagrams using the primary composition of chromites indicate a supra-subduction zone setting (SSZ) for the Archean chromitites of Nuggihalli and derivation from a boninitic magma. The composition of the komatiitic basalts resembles those of boninites that occur in subduction zones and back-arc rift settings. Formation of the massive chromitites in Nuggihalli may be due to magma mixing process involving hydrous high-Mg magmas or may be related to intrusions of chromite crystal laden magma; however, there is little scope to test these models because the host rocks are highly altered, serpentinized and deformed. The present configurations of the chromitite bodies are related to the multistage deformation processes that are common in Archean greenstone belts.  相似文献   
6.
When recent geological calibrations of the 176Lu decay constant are used, the 176Lu-176Hf ages of chondrites are consistently 4% too old (∼4.75 Ga). Here, we suggest that this discrepancy reflects the photoexcitation of the long-lived 176Lu ground state to the short-lived isomeric state (T1/2 = 3.7 h) by γ-rays irradiating early condensates. Irradiation may have been of solar origin and taking place at the inner edge of the nebular disk. Alternatively, the source of γ-rays could have been one or more supernova(e) exploding in the vicinity of the solar nebula. Such photoexcitation has been experimentally observed, but requires γ-ray photons that have energies in excess of 838 keV. At this stage, we cannot assess whether the Hf isotope composition of the Bulk Silicate Earth differs from that of chondrites, eucrites, and the 4.56 Ga old Martian meteorite ALH84001, and therefore, whether the precursor material for these different planetary bodies received comparable fluences of γ-rays.  相似文献   
7.
Radiogenic isotope compositions of Hf and Nd are typically coupled in Phanerozoic and Proterozoic mafic rocks due to a similar behaviour of Lu-Hf and Sm-Nd during mantle melting. Eoarchean rocks, for instance those from southern West Greenland, exhibit an apparent decoupling of Hf and Nd isotope compositions. This apparent decoupling may either indicate metamorphic disturbance or, alternatively, mirror early differentiation processes in the silicate Earth. To evaluate the issue, we performed combined measurements of Hf-Nd isotope compositions together with major and trace element concentrations for well preserved >3720 to >3800 Ma old tholeiitic metabasalts and gabbros from the ∼3700 Ma and ∼3800 Ma old terranes of the Isua Supracrustal Belt, southern West Greenland. In contrast to younger mafic rocks, calculated initial εHf-εNd values of the Isua tholeiites show similar spreads and are both near chondritic to strongly depleted (−0.7 to +6.3 and −0.8 to +4.4, respectively), also in contrast to previously reported more depleted signatures in nearby boninite-like metabasalts of the Garbenschiefer unit. An evaluation of alteration effects based on preserved major and trace element arrays reveals pristine magmatic trends and therefore the measured isotope compositions indeed in most cases characterize contrasting Eoarchean mantle sources. In accord with this view, compositions of the Isua metabasalts yield Eoarchean regression ages in Sm-Nd and Lu-Hf isochron spaces, overlapping with emplacement ages inferred from crosscutting relationships with tonalites. Lutetium-Hf systematics of the Isua metabasalts studied here, yield clear isochron relationships. For both terranes, there is some scatter in Sm-Nd space, indicating early disturbance of the Sm-Nd system close in time to the extrusion ages, possibly by seafloor alteration. Trace element compositions of the metabasalts indicate an arc setting and a strong source overprint by melt-like subduction components. It is likely, that the source overprint may have caused partial decoupling of the εHf-εNd values, due to selective addition of Nd as observed in modern subduction settings. In this case, the most radiogenic initial εNd and εHf isotope values characterize the most depleted mantle sources, and less radiogenic values would reflect increased contributions of isotopically more enriched subduction components. However, the most depleted samples still exhibit decoupled Hf-Nd compositions, making a case for the presence of even older mantle heterogeneities. A proposed superchondritic composition of the silicate Earth (SCHEM), however, cannot account for the most depleted sample compositions. Conversely, a depleted upper mantle formed by crystallization of perovskite-rich cumulates in the early Hadean may well explain these observed compositions. A literature survey reveals an overlap in initial Hf-Nd compositions between southern West Greenland TTGs and the metabasalts analyzed here. This overlap suggests a genetic relationship between these lithologies, where the TTGs may have inherited their unusual Hf-Nd compositions from mafic precursors isotopically similar in composition to the Isua tholeiites.  相似文献   
8.
It has been proposed that Archean tonalitic-trondhjemitic-granodioritic magmas (TTGs) formed by melting of mafic crust at high pressures. The residual mineralogy of the TTGs (either (garnet)-amphibolite or rutile-bearing eclogite) is believed to control the trace element budget of TTGs. In particular, ratios of high-field-strength elements (HFSE) can help to discriminate between the different residual lithologies. In order to place constraints on the source mineralogy of TTGs, we performed high-precision HFSE measurements by isotope dilution (Nb, Ta, Zr, Hf) together with Lu-Hf and Sm-Nd measurements on representative, ca. 3.85-2.8 Ga TTGs and related rock types from southern West Greenland, W-India and from the Superior Province. These measurements are complemented by major and trace element data for the TTGs. Texturally homogeneous early Archean (3.85-3.60 Ga old) and Mesoarchean (ca. 3.1-2.8 Ga old) TTGs have both low Ni (<11 ppm) and Cr contents (<20 ppm), indicating that there was little or no interaction with mantle peridotite during ascent. Ratios of Nb/Ta in juvenile Eoarchean TTGs range from ca. 7 to ca. 24, and in juvenile Mesoarchean TTGs from ca. 14 to ca. 27. Even higher Nb/Ta (14-42) were obtained for migmatitic TTGs and intra-crustal differentiates, most likely mirroring further fractionation of Nb from Ta as a consequence of partial melting, fluid infiltration and migmatisation. In the juvenile TTGs, positive correlations between Nb/Ta and Gd/Yb, La/Yb, Sr/Y, Zr/Sm and Zr/Nb are observed. These compositional arrays are best explained by melting of typical Isua tholeiites in both, the rutile-bearing eclogite stability field (>15 kbar, high Nb/Ta) and the garnet-amphibolite stability field (10-15 kbar, low Nb/Ta). With respect to the low end of Nb/Ta found for TTGs, there is currently some uncertainty between the available experimental datasets for amphibole. Independent of these uncertainties, the TTG compositions found here still require the presence of both endmember residues. A successful geological model for the TTGs therefore has to account for the co-occurrence of both low- and high-Nb/Ta TTGs within the same geologic terrane. An additional feature observed in the Eoarchean samples from Greenland is a systematic co-variation between Nb/Ta and initial εHf(t), which is best explained by a model where TTG-melting occured at progressively increasing pressures in a pile of tectonically thickened mafic crust. The elevated Nb/Ta in migmatitic TTGs and intra-crustal differentiates can shed further light on the role of intra-crustal differentiation processes in the global Nb/Ta cycle. Lower crustal melting processes at granulite facies conditions may generate high-Nb/Ta domains in the middle crust, whereas mid-crustal melting at amphibolite facies conditions may account for the low Nb/Ta generally observed in upper crustal rocks.  相似文献   
9.
Despite superimposed metamorphic overprinting and metasomatic alterations, primary volcanic features remain preserved in low-strain domains of mafic volcanic sequences in the western Isua supracrustal belt (ISB, West Greenland). These basaltic successions represent the hitherto oldest known fragments of oceanic crust on Earth. Early Archean metasomatic fluids, rich in light rare earth elements (LREE), Th, U, Pb, Ba, and alkalies, invaded the supracrustal package and distinctively altered the basaltic sequences. Field relationships, source characteristics traced by Pb isotopes, and geochronological results provide indications that these fluids were genetically related to the emplacement of tonalite sheets into the ISB between 3.81 and 3.74 Ga ago. Subsequent early Archean metamorphism homogenized the mixed primary and metasomatic mineral parageneses of these metavolcanic rocks. Allanite occurs as the most characteristic and critical secondary metasomatic-metamorphic phase and is developed in macroscopically discernible zones of increased metsomatic alteration, even in domains of low strain. Because of its high concentration of LREE, Th, and U, this secondary mineral accounts for much of the disturbances recorded by the Sm-Nd and Th-U-Pb isotope systematics of the pillowed metabasalts.The supracrustal sequences were tectono-metamorphically affected to varying degrees during a late Archean, ∼2.6- to 2.8-Ga-old event, also recognized in the adjacent gneiss terranes of the Isuakasia area. The degree to which bulk rocks were isotopically reequilibrated is directly dependent on the different relative contributions of allanite-hosted parent-daughter elements to the overall whole-rock mass budget of the respective isotope systems. Although low-strained (initially only weakly metasomatized) pillow basalts remained more or less closed with respect to the U-Pb and Rb-Sr systems since ∼3.74 Ga, the Sm-Nd system appears to have been partially opened on a whole-rock scale during the late Archean event. This diversified behavior of the whole-rock isotope systems with respect to late Archean overprinting is explained by the combination of mass budget contributions of the respective elements added during metasomatism and the partial opening of metasomatic macroenvironments during late Archean recrystallization processes with associated renewed fluid flow. In reactivated zones of high strain, where primary metasomatic alteration is most prominently developed, late Archean partial resetting also of the U-Pb isotope system on a whole-rock scale occurred. This is consistent with an apparent late Archean age of kyanite, which initially crystallized during the early Archean metamorphism. Its age is controlled by the U-Pb systematics of allanite inclusions, which have exchanged their isotopic properties during the tectono-metamorphic event that overprinted the oceanic crustal sequence at Isua more than 1000 myr later.These results underline the need for care in the interpretation of whole-rock geochemical data from polymetamorphic rocks in general, and from the Isua oceanic crustal sequences in particular, to constrain isotopic models of early Earth’s evolution. Likewise, this study cautions against the indiscriminate use of geochemical data of metavolcanic rocks from Isua to infer models for geotectonic settings relevant for their formation.  相似文献   
10.
Polymineralic aggregates composed of clinopyroxene, Fe-Ti oxide minerals, apatite and accessory K-feldspar, biotite, and amphibole are enclosed in cumulus plagioclase grains in the Middle Zone of the Skærgaard intrusion. The chemistry of the minerals in the aggregates, and the textural relations between the aggregates and the host plagioclase grains indicate that they represent inclusions of the contemporaneous melt of the Skærgaard intrusion. Through mass balance calculations a quantitative estimate of the melt composition for this level in the intrusion can be obtained, and this estimate confirms that the silica content in the Middle Zone melt was similar to, or possibly even lower than, the silica content in the initial Skærgaard melt, and relatively enriched in iron.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号