首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   18篇
  国内免费   4篇
测绘学   3篇
大气科学   6篇
地球物理   49篇
地质学   61篇
海洋学   8篇
天文学   7篇
自然地理   11篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   5篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2011年   6篇
  2010年   7篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   11篇
  2004年   6篇
  2003年   5篇
  2002年   2篇
  2000年   8篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1973年   1篇
  1968年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
1.
2.
We describe recent mechanical andeelectronic modifications to the Cambridge Ocean Bottom Hydrophone system, enabling it to record in addition three geophone channels from a deployed, disposable geophone package. Examples of data from seismic refraction experiments show good correspondence between records of ground motion detected by the hydrophone and the vertical geophone. Seismic signals are undistorted by noise from instrument related sources. Clear examples of P to S conversions just below the receiver are observed. Improved recording conditions are achieved by deploying the geophones in a small pressure vessel as far away as possible from the main instrument package.  相似文献   
3.
4.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   
5.
The development of subgrain boundary misorientations with strain in dry, synthetic NaCl polycrystals, deformed at elevated temperature, has been investigated using electron backscattered diffraction (EBSD). At low natural strains, up to 0.5, average misorientations of subgrain boundaries increase with strain and a power law relationship exists between strain and average misorientations. The average misorientations are strongly influenced by grain orientation, suggesting that the misorientation–strain relationship may also be texture dependent in materials with high plastic anisotropy, like NaCl. A slight grain size dependency of the average misorientations was observed. The results indicate that with suitable calibration, average subgrain boundary misorientations may offer a method for estimating the strain accommodated by dislocation creep in NaCl and thus perhaps in other geological materials, although current theories for polycrystalline plasticity imply that misorientations may also depend on stress in some situations.  相似文献   
6.
Diagnosing the source of errors in snow models requires intensive observations, a flexible model framework to test competing hypotheses, and a methodology to systematically test the dominant snow processes. We present a novel process‐based approach to diagnose model errors through an example that focuses on snow accumulation processes (precipitation partitioning, new snow density, and snow compaction). Twelve years of meteorological and snow board measurements were used to identify the main source of model error on each snow accumulation day. Results show that modeled values of new snow density were outside observational uncertainties in 52% of days available for evaluation, while precipitation partitioning and compaction were in error 45% and 16% of the time, respectively. Precipitation partitioning errors mattered more for total winter accumulation during the anomalously warm winter of 2014–2015, when a higher fraction of precipitation fell within the temperature range where partition methods had the largest error. These results demonstrate how isolating individual model processes can identify the primary source(s) of model error, which helps prioritize future research.  相似文献   
7.
8.
9.
Clinoamphibole from a mylonitic amphibolite exhibits microstructures characteristic of dynamic recrystallization, including porphyroclasts in a finer grained matrix of needle-shaped amphibole. The matrix amphibole defines an LS fabric and porphyroclasts have core and mantle structures with a core containing undulose to patchy extinction and (100) deformation twinning surrounded by a mantle of recrystallized grains. In addition intragranular grains also occur within the cores. TEM analyses of the porphyroclasts reveal that they contain a wide variety of lattice defects including high densities (5 × 108cm–2) of free dislocations and dislocation arrays, dissociated dislocations, stacking faults, and (100) micro-twins. TEM also shows that matrix grains and intragranular grains have relatively low defect densities, and that the intragranular new grains occur at localities in the porphyroclasts characterized by high densities of dislocations. These observations along with the chemical and orientation relationships between the recrystallized grains and porphyroclasts indicate that the new grains may have formed by heterogeneous nucleation and that further growth probably occurred by both strain assisted and chemically induced grain boundary migration or liquid film migration. This recrystallization event is interpreted to be synkinematic based on the fact that no recrystallization textures are present in the matrix grains and that the matrix grains define an LS fabric. However, the low defect densities in the matrix grains and the lack of intracrystalline strain in other phases indicate that post-kinematic recovery processes were active.  相似文献   
10.
Successive temperature logs have been obtained over a period of two years in three closely-spaced boreholes in the Lac du Bonnet batholith of the Superior Province of the Canadian Shield. Two of the boreholes, of depth 450 m and 830 m, intersect a dipping fracture zone at 435–450 m. In both holes water is flowing from near the surface to the fracture zone at approximately 1.5–1.9·10−5 m3 s−1, the flow being inferred from analysis of the temperature logs. Below 25 m, temperatures in these two holes are 0.22–0.28 K lower than those in the third, 145 m, hole.The temperature data have been combined with over 200 thermal conductivity measurements on core samples to produce heat flow values. In the deepest hole heat flow above the fracture zone is 16% higher than that below the zone. This indicates that water is flowing up the fracture zone. The flow rate is approximately 0.3 g s−1 m−1, and the flow has existed for thousands of years.Observation of thermal effects of water flow in massive, relatively unfractured plutons in a region having little topographic relief causes one to be concerned about the reliability of heat flow values measured in similar environments.The regional heat flow is taken to be 50 mW m−2 after correction for glaciation effects. The average value of 24 determinations of radioactive heat generation in granitic core samples is 5.23 ± 1.11 μW m−3, which is more than three times higher than expected for such a heat flow in the Superior Province. This implies that the layer of high radioactive heat generation is thin, being not more than 4 km and probably about 1.3 km thick.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号