首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   16篇
测绘学   5篇
大气科学   7篇
地球物理   42篇
地质学   138篇
海洋学   27篇
天文学   15篇
自然地理   28篇
  2023年   2篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2016年   6篇
  2015年   7篇
  2014年   6篇
  2013年   17篇
  2012年   5篇
  2011年   16篇
  2010年   8篇
  2009年   14篇
  2008年   10篇
  2007年   4篇
  2006年   9篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   9篇
  2001年   10篇
  2000年   6篇
  1998年   8篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1972年   1篇
  1961年   1篇
  1955年   2篇
  1937年   1篇
排序方式: 共有262条查询结果,搜索用时 390 毫秒
1.
A new approach to constraining seawater δ34S and sulphate concentration using francolite‐bound sulphate reveals an abrupt increase in δ34S to +50‰ around the Early–Middle Cambrian boundary. Such high δ34S values are best explained by increased rates of pyrite burial due to ocean anoxia coupled with an increased sensitivity of the ocean sulphate reservoir to perturbations due to low sulphate concentrations of 500–700 μgL?1. We argue that the spread of anoxic waters at this time was partly the result of greenhouse warming related to the eruption of the Kalkarindji Large Igneous Province of northern Australia and that it triggered the collapse of early metazoan reef ecosystems during the latest Early Cambrian. Mass extinctions of the last 260 Myr have all coincided with enhanced volcanic activity, while several are also associated with positive shifts in seawater δ34S. Extending this correlation back in time further implicates volcanically induced climate change as a major determining factor in biosphere evolution. Terra Nova, 18, 257–263, 2006  相似文献   
2.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   
3.
Flower and fruit production of the abundant, tall, long-lived, dioecious, surface-pollinating seagrass species Enhalus acoroides (L.) Royle were estimated at seven sites in the reef flats off Bolinao (NW Luzon, The Philippines) featuring different fragmentation of the seagrass meadows. Fragmentation of the seagrass meadow was quantified as cover of E. acoroides and all seagrass species present in 20×20 m plots. E. acoroides and overall seagrass cover were correlated positively. The proportion of female flowers of E. acoroides that developed a fruit increased sharply as overall seagrass cover was around 50%. Apparent sex ratio bore no relationship with overall seagrass cover. This threshold-type of relationship suggests that fragmentation of seagrass meadows can have a major effect on the reproductive output of this species. A possible mechanism underlying these results would be a non-linear increase of the efficiency of trapping the surface-dispersed pollen with increasing seagrass canopy density. This provides the first evidence based on real data that fragmentation can affect the population dynamics of seagrass species.  相似文献   
4.
Physical and biological processes controlling spatial and temporal variations in material concentration and exchange between the Southern Everglades wetlands and Florida Bay were studied for 2.5 years in three of the five major creek systems draining the watershed. Daily total nitrogen (TN), and total phosphorus (TP) fluxes were measured for 2 years in Taylor River, and ten 10-day intensive studies were conducted in this creek to estimate the seasonal flux of dissolved inorganic nitrogen (N), phosphorus (P), total organic carbon (TOC), and suspended matter. Four 10-day studies were conducted simultaneously in Taylor, McCormick, and Trout Creeks to study the spatial variation in concentration and flux. The annual fluxes of TOC, TN, and TP from the Southern Everglades were estimated from regression equations. The Southern Everglades watershed, a 460-km2 area that includes Taylor Slough and the area south of the C-111 canal, exported 7.1 g C m−2, 0.46 g N m−2, and 0.007 g P m−2, annually. Everglades P flux is three to four orders of magnitude lower than published flux estimates from wetlands influenced by terrigenous sedimentary inputs. These low P flux values reflect both the inherently low P content of Everglades surface water and the efficiency of Everglades carbonate sediments and biota in conserving and recycling this limiting nutrient. The seasonal variation of freshwater input to the watershed was responsible for major temporal variations in N, P, and C export to Florida Bay; approximately 99% of the export occurred during the rainy season. Wind-driven forcing was most important during the later stages of the dry season when low freshwater head coincided with southerly winds, resulting in a net import of water and materials into the wetlands. We also observed an east to west decrease in TN:TP ratio from 212:1 to 127:1. Major spatial gradients in N:P ratios and nutrient concentration and flux among the creek were consistent with the westward decrease in surface water runoff from the P-limited Everglades and increased advection of relatively P-rich Gulf of Mexico (GOM) waters into Florida Bay. Comparison of measured nutrient flux from Everglades surface water inputs from this study with published estimates of other sources of nutrients to Florida Bay (i.e. atmospheric deposition, anthropogenic inputs from the Florida Keys, advection from the GOM) show that Everglades runoff represents only 2% of N inputs and 0.5% of P input to Florida Bay.  相似文献   
5.
Predictably, in a country such as Britain, with its preponderance of consolidated, sedimentary, mainly fissure-flow aquifers, there is a very large number of springs, many of which are, or have been, used for public supply. Migratory springs are a feature of the British (Ur. Cretaceous) Chalk, the most important British aquifer. The Chalk's low specific yield and high capillary moisture retention together give rise to very considerable fluctuations (more than 33 m in some areas) of the unconfined water table. Along the gentle dip slopes of the Chalk (North and South Downs of southern and southeastern England) springs may migrate laterally for several miles, giving rise to seasonal streams locally known as bournes or lavants. However, springs such as at Duncton, West Sussex, at the base of the much steeper scarp slopes of the Chalk, form point sources, the flows from which tend to be relatively steady; such springs commonly supply and are the original reason for the existence of many of the small towns and villages which nestle along the bases of the chalk scarps of Sussex and Kent.Where the Chalk forms coastal cliffs, a number of springs break out at the base of the cliff between high and low tide levels; there are major chalk coastal springs, for instance, at St. Margaret's Bay (Kent) and at Arish Mells, east of Lulworth Cove, Dorset. Such springs are not used for direct supply (their salinity is usually too high) but are indicators of the presence of local reserves of groundwater for possible future development.  相似文献   
6.
7.
8.
9.
10.
Apatite dissolution experiments were conducted using both a fluidized bed and stirred tank reactor over a range of pH, temperature, solution saturation state, and on non-carbonated and carbonated apatite compositions: igneous fluorapatite (FAP) and sedimentary carbonate fluorapatite (CFA), respectively. From 2 <pH <6, the rate of release from dissolution of all apatite components [calcium (Ca), phosphorus (P), and fluoride (F)] increased with decreasing pH for FAP. From 6 < pH < 8.5, the FAP dissolution rate is pH independent. Measuring apatite dissolution rates at pH > 8.5 were not possible due to detection limits of the analytical techniques used in this study and the high insolubility of FAP. For the CFA compositions studied, the dissolution rate decreased with increasing pH from 4 < pH < 7. During early stages of the dissolution reaction for both FAP and CFA, mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P and Ca:F being greater than mineral stoichiometric ratios, suggesting that Ca was preferentially released compared to P and F from the mineral structure during the early stages of dissolution. An increase in reacted solution pH accompanies this early elevated release of Ca. As the dissolution reaction proceeded to steady state, dissolution became congruent. When normalized to BET measured surface area, FAP dissolved faster from 4 < pH < 7 compared to CFA. The apparent Arrhenius activation energy (Ea) of FAP dissolution over the temperature range of 25-55°C at pH = 3.0, I = 0.1, and pCO2 = 0 is 8.3 ± 0.2 kcal mol−1. Both the apparent exchange of solution H+ for solid-bound Ca at low pH in the early stage of dissolution and the Ea of dissolution suggest a surface and not a diffusion controlled dissolution reaction for FAP and CFA. The degree of undersaturation of the solution, ΔGR, with respect to FAP was important in determining the dissolution rate. At pH = 3.0, I = 0.1, and pCO2 = 0, the dissolution rate of FAP was ∼ 5× greater in the far-from-equilibrium region compared to the near-equilibrium slope region.A simple apatite weathering model incorporating the experimental results from this study was constructed, and numerical calculations suggest that during the Phanerozoic both the surface area of igneous rock available for weathering and the average global temperature were important factors in determining the P weathering flux from apatite dissolution. It is possible that elevated global temperatures coupled with relatively high surface area of igneous rock during the early- to mid-Paleozoic resulted in elevated P weathering fluxes, which along with climatic evolutionary pressures of the Neoproterozoic, facilitated the radiation of multicellular organisms, large-scale phosphorite deposition, and abundance of calcium phosphate shelled organisms during the early Cambrian.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号