首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   3篇
地球物理   8篇
地质学   4篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
排序方式: 共有12条查询结果,搜索用时 171 毫秒
1.
Submarine groundwater discharge (SGD) plays an important role in coastal biogeochemical processes and hydrological cycles, particularly off volcanic islands in oligotrophic oceans. However, the spatial and temporal variations of SGD are still poorly understood owing to difficulty in taking rapid SGD measurements over a large scale. In this study, we used four airborne thermal infrared surveys (twice each during high and low tides) to quantify the spatiotemporal variations of SGD over the entire coast of Jeju Island, Korea. On the basis of an analytical model, we found a linear positive correlation between the thermal anomaly and squares of the groundwater discharge velocity and a negative exponential correlation between the anomaly and water depth (including tide height and bathymetry). We then derived a new equation for quantitatively estimating the SGD flow rates from thermal anomalies acquired at two different tide heights. The proposed method was validated with the measured SGD flow rates using a current meter at Gongcheonpo Beach. We believe that the method can be effectively applied for rapid estimation of SGD over coastal areas, where fresh groundwater discharge is significant, using airborne thermal infrared surveys.  相似文献   
2.
Submarine groundwater discharge (SGD) is a global phenomenon that carries large volumes of groundwater and dissolved chemical species such as nutrient, metals, and organic compounds to coastal zones. We report the influence of SGD on the coastal waters of Jeju Island, Korea, using high‐resolution aerial thermal infrared (TIR) mapping techniques and field investigations. An aircraft‐based system was implemented using a cost‐effective TIR camera for aerial TIR mapping. Ground‐based calibrations and system integration with GPS/IMU (global positioning system/inertial measurement unit) were performed for the aerial systems. The aerial surveys showed distinct low‐temperature signatures of SGD along the coasts of Jeju Island, revealing large groundwater inputs from the coastal aquifers to the ocean. Multiple aerial surveys over a range of seasons and tidal stages revealed that SGD rates dynamically affect the sea surface temperature (SST) of the coastal zone. The in‐situ measurements supported that SGD has a substantial influence on the coastal water chemistry as well as SST. Our observations highlight the extent to which aerial‐based TIR mapping can serve as a powerful tool for studying SGD and other coastal processes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
3.
Lee  Soo-Hyoung  Lee  Jae Min  Moon  Sang-Ho  Ha  Kyoochul  Kim  Yongcheol  Jeong  Dan Bi  Kim  Yongje 《Hydrogeology Journal》2021,29(4):1679-1689

Hydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.

  相似文献   
4.
Groundwater responses at 15 monitoring wells on Jeju Island were observed in relation to the magnitude 9.0 Tohoku Earthquake off the Pacific coast of Honshu, Japan, on 11 March 2011, at 14:46:23 h local time (05:46:24 h UTC time). In coastal areas, the groundwater level responses to the earthquake were oscillatory at 12 wells, and the range of the maximum groundwater level changes was 3–192.4 cm. The response durations were approximately 1–62 min. The relationship between the maximum groundwater level changes and the response durations displayed a high correlation coefficient (r = 0.81). Groundwater temperature changes were also observed at 7 of 12 wells 3–10 min after the seismic wave arrived, and the range was from 0.01 °C to 1.20 °C. In mid‐elevation areas, the groundwater level changes appeared in three different forms: oscillatory, spiky and persistent. The groundwater temperature changes were also observed at two wells. One indicated decreasing and recovering temperatures, and the other exhibited rising and persistent temperatures. The primary temperature changes occurred 5–6 min after the earthquake and 2–3 min after the seismic wave arrived. In addition, the electrical conductivities at the depth of the transition zone were monitored, and the responses to the earthquake appeared at all three wells. Although the electrical conductivity and temperature changes were not well understood, groundwater inflow and mixing were likely caused by the earthquake, and the responses were various and site specific. The responses to the earthquake were closely related to the hydrogeological characteristics at each monitoring well, and a more detailed hydrogeological characterization is needed to understand the mechanisms related to earthquakes in general. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
5.
6.
Spring water and water culture on Jeju island   总被引:1,自引:0,他引:1  
Park WB  Ha K 《Ground water》2012,50(1):159-165
  相似文献   
7.
This paper describes the impacts of the M5.8(5.1) Gyeongju earthquakes on groundwater levels using data obtained from a unique coastal monitoring well. The monitoring strategy integrates conventional water level monitoring with periodic, continuous measurements of temperature and electrical conductivity (EC) within the water column of the well. Another important component of the monitoring system is a new instrument, the InterfacEGG, which is capable of dynamically tracking the freshwater-saltwater interface. Although the system was set up to monitor seawater intrusion related to over-pumping, as well as rainfall and tidal effects, it recorded impacts associated with a large earthquake and aftershocks approximately 241 km away. Seismic energies associated with the M5.8(5.1) Gyeongju earthquakes induced groundwater flows to the monitoring well through fractures and joints in the crystalline basement rocks. Temperature and EC logging data showed that the EC vertical profile declined from an average of approximately 5300 to 4800 μS/cm following the earthquakes. The temperature profile showed a trend toward lower temperatures as the depth increased, a feature not commonly observed in previous studies. Data from the InterfacEGG suggested that the rise in EC was not due to the saltwater intrusion, but from the tendency for brackish water entering the borehole to induce convective mixing at deeper depths as the seismic waves travel through the well-aquifer system. The increase in groundwater levels was caused by pulse of colder, less brackish water flowing into the well because of the earthquake. This behavior reflects an enhancement in rock permeability by removing precipitates and colloidal particles from clogged fractures, which improve the hydraulic connection with a nearby unit with a higher hydraulic head. This study suggests there is value added with a more aggressive monitoring strategy.  相似文献   
8.
Multiple linear regression of spatial variables including land use, soil type, and topography was applied to predict nitrate concentration and evaluate major factors affecting nitrate occurrence in springs and wells in the southern and northern areas of Jeju volcanic island, Korea. Three types of contributing area surrogates (CAS), namely circle, semicircle, and wedge, were employed to calculate the spatial variables. The regression results showed R2 of 0.81–0.84 for springs and 0.74–0.77 for wells; R2 values for wedge and semicircular CAS were more than 10% higher than those for circular CAS. The R2 of spring models was significantly affected by both the shape and size of CAS, with optimal radii of 150–250 m and 300–400 m in the southern and northern areas, respectively, corresponding to thinner upper basaltic aquifers, and implying shorter flow paths in the southern area. The most influential variables in springs were orchards and soil types related to agriculture including silty loam and silty clay loam, indicating that nitrate levels are strongly affected by N fertilization in cultivated areas. In contrast, wells showed much less sensitivity to both shapes and sizes of CAS, with less contribution of land use and soil type to the regression, which could be attributed to a mix of multiple aquifer zones and widely different factors in the installation and operation of wells. Field parameters of electrical conductivity (EC) and pH increased the R2 up to 10%, suggesting that these can be useful when regression with spatial variables yields a lower R2. The optimal spatial scales for prediction of nitrate concentration and spatial variables that significantly contribute to nitrate contamination can provide relevant criteria for establishing groundwater management policies, considering the increasing anthropogenic land‐use trends on the island, where groundwater is highly sensitive to changes in spatial variables. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
9.
Numerical groundwater models were used to assess groundwater sustainability on Jeju Island, South Korea, for various climate and groundwater withdrawal scenarios. Sustainability criteria included groundwater-level elevation, spring flows, and salinity. The latter was studied for the eastern sector of the island where saltwater intrusion is significant. Model results suggest that there is a need to revise the current estimate of sustainable yield of 1.77?×?106 m3/day. At the maximum extraction of 84  % of the sustainable yield, a 10-year drought scenario would decrease spring flows by 28 %, dry up 27 % of springs, and decrease hydraulic head by an island-wide average of 7 m. Head values are particularly sensitive to changes in recharge in the western parts of the island, due to the relatively low hydraulic conductivity of fractured volcanic aquifers and increased groundwater extraction for irrigation. Increases in salinity are highest under drought conditions around the current 2-m head contour line, with an estimated increase of up to 9 g/L under 100 % sustainable-yield use. The study lists recommendations towards improving the island’s management of potable groundwater resources. However, results should be treated with caution given the available data limitations and the simplifying assumptions of the numerical modeling approaches.  相似文献   
10.
An  Hyowon  Ha  Kyoochul  Lee  Eunhee 《Hydrogeology Journal》2022,30(1):303-314
Hydrogeology Journal - A step-drawdown test is one of the most widely used aquifer tests to estimate the groundwater well yield and the well performance. A method is proposed for analyzing...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号