首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   9篇
大气科学   1篇
地球物理   12篇
地质学   19篇
海洋学   3篇
天文学   2篇
自然地理   3篇
  2023年   2篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   4篇
  2016年   5篇
  2014年   4篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  1984年   1篇
  1977年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
In this study we examine the behavior of the thermohaline circulation, as simulated by the Community Climate System Model version 3 (CCSM3), for several centuries following CO2 stabilization for the SRES B1 and A1B scenarios and for an “overshoot” scenario in which CO2 levels temporarily reach the same level as in the A1B scenario before declining to an ultimate stabilization level that is identical to the B1 case. While we find no evidence for irreversible changes of the thermohaline circulation in the overshoot experiment, the interplay of the different timescales of the temperature response of the surface and interior ocean does lead to a number of differences in the long-term response of the ocean between it and the B1 stabilization scenario where the same GHG levels are approached by different paths. The stronger initial warming and its slow penetration into the deeper ocean, followed by a transient surface cooling in the overshoot scenario leads to lower static stability, deeper mixing, and a more rapid recovery of the thermohaline circulation than in the B1 stabilization scenario. While the overshoot scenario recovers surface conditions (e.g. SST, sea ice extent) very similar to the B1 scenario shortly after reaching the same GHG levels, the additional accumulation of heat in the interior ocean during the period of higher forcing causes the global mean ocean temperature and steric sea level to remain higher than in the B1 stabilization scenario for at least another several centuries.  相似文献   
2.
Internal waves were observed by measuring temperature variations of several subsurface layers at the innermost part of Suruga Bay from December 1968 to October 1971. Spectral energy densities of temperature fluctuations were computed from the records of the measurements. In the shorter period range from one minute to one hour, peaks of energy density were found occasionally in the range shorter than the minimum of VÄisÄlÄ periods computed from the vertical distribution of water density. It has been generally understood, however, that the periods of internal waves in a stable stratum should be within the range between the inertial and VÄisÄlÄ periods.The measurements of tidal currents in the surface and lower layers, which were undertaken simultaneously with the temperature measurements, revealed that the short-period oscillations were associated with the increase of current velocity and of vertical shear of current at the pycnocline.It is considered that observed periods shorter than the minimum of VÄisÄlÄ period are not real but apparent periods due to the Doppler effect, because the waves are generated in the velocity shear of tidal current and the source is moving towards the station with the tidal current.  相似文献   
3.
The degrees of thermal metamorphism of 10 CM chondrites and of the Allende CV3 chondrite were evaluated from the viewpoint of “graphitization” of the carbonaceous macromolecular matter by means of flash pyrolysis-gas chromatography (GC). The unheated chondrites, Yamato- (Y-) 791198, Murray and Cold Bokkeveld, yielded larger amounts and wider varieties of pyrolyzates than the chondrites strongly heated in the parent asteroids, Y-82054, Y-86695, and Belgica- (B-) 7904, and Asuka- (A-) 881334 (more strongly heated than Y-793321, which has been weakly heated, but lesser than the other strongly heated meteorites). The weakly heated chondrites, Y-793321 and A-881458, showed intermediate features. The data indicate that graphitization of the carbonaceous matter is most extreme in the strongly heated chondrites and that during graphitization, the matter has lost its labile portion, which can generate pyrolyzates such as naphthalene. In order to establish a new method for the evaluation of the degree of graphitization of chondritic carbonaceous matter, a diagram was developed to show the relationship between the total amounts of pyrolyzates with retention times later than 5 min (=SRT>5) and the ratio of the amount of naphthalene, a pyrolysis product, to SRT>5 (=SN/SRT>5). The diagram indicates a possible evolutionary pathway of graphitization of the carbonaceous matter in carbonaceous chondrites.  相似文献   
4.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
5.
6.
This study was conducted to assess the existing concentration of 17β-estradiol(E2)in the surface water samples collected from rivers and lakes around Klang Valley,Malaysia.E2,which is a natural feminizing chemical produced in female organisms,regularly used to compare with other environmental estrogens because they behave similarly and react effectively as a hormone at a very low concentration.It was found that the average concentration of E2 in the aquatic environment of Klang Valley was(14.08 ±3.67)pg/mL,which was 14 times higher than those in the Japanese aquatic environment in this study.The river system had the average concentration of(20.02±5.26)pg/mL while the lake had an average concentration of(5.91±3.39)pg/mL.The E2 concentration was presumed high if the sources occurred nearby the area.Current levels of E2 in the aquatic environment may possess threats to existing aquatic organisms.Since high level of E2 has been discovered in the aquatic environment around Klang Valley,further studies and monitoring of E2 and other EDCs concentrations are needed to determine their levels in Malaysian aquatic environment and help to control these chemicals pollution in the aquatic environment.  相似文献   
7.
Simultaneous analysis of carbon and nitrogen isotope ratios by SIMS was applied for the first-time to a natural diamond from the Kelsey Lake kimberlite, State Line Distinct, Colorado (UWD-1). This in situ procedure is faster, reduces sample size for analysis, and measures both isotope ratios from a single ~ 10 μm diameter pit, a critical advantage for zoned diamonds. The carbon isotope ratio (expressed as δ13CVPDB) of the bulk UWD-1 crystal, determined by the conventional combustion method in the present study, is -5.9‰ ± 0.2‰ (VPDB, 2s). Nitrogen mass fraction ([N]) and isotope ratio (expressed as δ15NAir) were determined by stepwise combustion and gas-source mass-spectrometry, resulting in 553 ± 64 μg g-1 and -6.7‰ ± 1.1‰ (Air, 2s), respectively. Secondary ions of 12C2-, 12C13C-, 12C14N-, and 12C15N- were simultaneously measured by SIMS using three Faraday cups and one electron multiplier. The spot-to-spot reproducibility of δ13C and δ15N values for the UWD-1 (178 spots on sixteen chips, 10 μm spots), were 0.3‰ and 1.6‰, respectively (2s). While 12C14N-/12C2- ratios, which are an indicator for [N], varied up to 12% among these sixteen chips, such variation did not correlate with either δ13C or δ15N values. We propose that UWD-1 is a suitable reference sample for microscale in situ analysis of δ13C and δ15N values in diamond samples.  相似文献   
8.
The Cr isotope ratios of terrestrial and extra-terrestrial materials are emerging as one of the most important tracers in geosciences. Previous studies on Cr isotopic measurements using TIMS have found that there is residual Cr isotopic fractionation between the mass-fractionation-corrected 53Cr/52Cr and 54Cr/52Cr ratios, which may cause an offset of obtained ratios from the reference values. The residual fractionation was thought to be caused by the evaporation of Cr-oxide species during thermal ionisation, but the mechanism by which this residual fractionation could be reduced remained unclear. Here we revisit the issue of residual fractionation and propose that this problem can be alleviated by utilising W filaments instead of conventionally used Re filaments for Cr ionisation. Using W filaments, the formation of CrO+ was suppressed during heating as the filament temperature was ~ 100 °C lower than when Re filaments were used. In repeated measurement of a carbonaceous chondrite, the intermediate precisions of 53Cr/52Cr and 54Cr/52Cr ratios in the W filament runs were two to three times better than those of the Re filament runs. Therefore, the new finding of this study will be of key importance for future studies of Cr isotopes for terrestrial and extra-terrestrial materials.  相似文献   
9.
Corundum (Crn), including sapphire, occurs in emery pods surrounded by marble on the island of Naxos, Greece. The emery formed from bauxite deposited in karst that was metamorphosed to 400–700°C at 20–15 Ma. Many of these rocks initially appeared well suited for refractory accessory mineral (RAM) thermometry, which uses oxygen isotope fractionation between a RAM – corundum – and a modally dominant phase with faster diffusion of oxygen – calcite (Cc) – to determine peak metamorphic temperatures. However, previous attempts at oxygen isotope thermometry were confounded by highly variable fractionations (Δ18O) measured at mm-scale and the uncertain calibration of Δ18O(Cc-Crn) versus temperature. Secondary ion mass spectrometry (SIMS) permits in situ analysis of δ18O in corundum and calcite at the 10-μm scale in adjacent grains where textures suggest peak metamorphic equilibrium was attained. SIMS analyses of adjacent mineral pairs in eight rocks yield values of Δ(Cc-Crn) that systematically decrease from 7.2 to 2.9‰ at higher metamorphic grade. Pairing these data with independent temperature estimates from mineral isograds yields an empirical calibration of 1,000 lnα(Cc-Crn) = 2.72 ± 0.3 × 106/T2 (T in K). The new fractionations (2.7‰ at 1,000 K) are significantly smaller than those calculated from the modified increment method (6.5‰ at 1,000 K; Zheng, Geochimica et Cosmochimica Acta, 1991, 55:2299–2307; Zheng, Mineral Mag, 1994, 58A:1000–1001), which yield unreasonably high temperatures of 630 to 1,140°C when applied to the new Naxos data. The new calibration of Δ(Cc-Crn) can be combined with published fractionations to calculate A-factors for corundum versus a range of 14 other minerals. These new fractionation factors can be used for thermometry or to constrain the genesis of corundum. A compilation of gem corundum δ18O values shows that many igneous sapphires, including important deposits of basalt-associated sapphire, are mildly elevated in δ18O relative to the calculated range in equilibrium with mantle values (4.4–5.7‰) and formed from evolved magmas.  相似文献   
10.
A rapid reduction in sediment porosity from 60 to 70 % at seafloor to less than 10 % at several kilometers depth can play an important role in deformation and seismicity in the shallow portion of subduction zones. We conducted deformation experiments on rocks from an ancient accretionary complex, the Shimanto Belt, across the Nobeoka Thrust to understand the deformation behaviors of rocks along plate boundary faults at seismogenic depth. Our experimental results for phyllites in the hanging wall and shale‐tuff mélanges in the footwall of the Nobeoka Thrust indicate that the Shimanto Belt rocks fail brittlely accompanied by a stress drop at effective pressures < 80 MPa, whereas they exhibit strain hardening at higher effective pressures. The transition from brittle to ductile behavior in the shale–tuff mélanges lies on the same trend in effective stress–porosity space as that for clay‐rich and tuffaceous sediments subducting into the modern Nankai subduction zone. Both the absolute yield strength and the effective pressure at the brittle–ductile transition for the phyllosilicate‐rich materials are much lower than for sandstones. These results suggest that as the clay‐rich or tuffaceous sediments subduct and their porosities are reduced, their deformation behavior gradually transitions from ductile to brittle and their yield strength increases. Our results also suggest that samples of the ancient Shimanto accretionary prism can serve as an analog for underthrust rocks at seismogenic depth in the modern Nankai Trough.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号