首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   1篇
地球物理   3篇
地质学   5篇
海洋学   6篇
天文学   7篇
  2012年   1篇
  2008年   1篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  1998年   1篇
  1996年   2篇
  1989年   1篇
  1985年   1篇
  1983年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有21条查询结果,搜索用时 78 毫秒
1.
2.
3.
Effects of inertial and kinematic forces on pile stresses are studied based on large shaking table tests on pile-structure models with a foundation embedded in dry and liquefiable sand deposits. The test results show that, if the natural period of the superstructure, Tb, is less than that of the ground, Tg, the ground displacement tends to be in phase with the inertial force from the superstructure, increasing the shear force transmitted to the pile. In contrast, if Tb is greater than Tg, the ground displacement tends to be out of phase with the inertial force, restraining the pile stress from increasing. With the effects of earth pressures on the embedded foundation and pile incorporated in, pseudo-static analysis is conducted to estimate maximum moment distribution in pile. It is assumed that the maximum moment is equal to the sum of the two stresses caused by the inertial and kinematic effects if Tb<Tg or the square root of the sum of the squares of the two if Tb>Tg. The estimated pile stresses are in good agreement with the observed ones regardless of the occurrence of soil liquefaction.  相似文献   
4.
The importance of the interstellar magnetic field is studied in relation to the evolution of superbubbles with a three-dimensional (3D) numerical magnetohydrodynamical (MHD) simulation. A superbubble is a large supernova remnant driven by sequential supernova explosions in an OB association. Its evolution is affected by the density stratification in the galactic disc. After the superbubble size reaches 2–3 times the density scaleheight, it expands preferentially in the z -direction, until finally it can punch out a hole in the gas disc (blowout). On the other hand, the magnetic field running parallel to the galactic disc has the effect of preventing it from expanding in the direction perpendicular to the field. The density stratification and the magnetic fields have completely opposite effects on the evolution of the superbubble. We present results of a 3D MHD simulation in which both effects are included. As a result, it is concluded that when the magnetic field has a much larger scaleheight than the density, even for a model in which the bubble would blow out from the disc if the magnetic field were absent, a magnetic field with a strength of 5 μG can confine the bubble in | z |≲300 pc for ≃ 20 Myr (confinement). In a model in which the field strength decreases in the halo as B  ∝ ρ1/2, the superbubble eventually blows out like a model with B  = 0 even if the magnetic field in the mid-plane is as strong as B  = 5 μG.  相似文献   
5.
Within augite and pigeonite grains of the Skaergaard ferrogabbro 4430, the Ca-poor phases contain only three mole percent of CaSiO3, and the Mg-Fe partition coefficients between the Ca-poor and Ca-rich phases are extremely small with 0.46 for augite and 0.51 for pigeonite grains. These values indicate existence of diffusion within each grain (intragranular diffusion) at considerably low temperatures.The compositions are slightly but definitely different between the Ca-rich phases in augite and pigeonite grains as well as between the Ca-poor phases in augite and pigeonite grains. This indicates that the diffusion among the grains (inter-granular diffusion) has not taken place under the subsolidus condition of the Skaergaard intrusion.  相似文献   
6.
The interaction of intergalactic-gas flow, which is assumed to be an incompressible fluid, with a rigid-body, spheroidal galaxy is examined analytically. The gas-flow patterns, the distributions of pressure at the surface of galaxy and some other quantities are calculated for the cases with and without viscosity. By use of results, we discuss the formation of HI ridges, trailing clouds and gas streams accompanying with galaxies, and the bending (or warping) of intersteller gas observed in spiral galaxies are analyzed. Some discussion on the Magellanic Stream is given.  相似文献   
7.
We present a high-performance N-body code for self-gravitating collisional systems accelerated with the aid of a new SIMD instruction set extension of the x86 architecture: Advanced Vector eXtensions (AVX), an enhanced version of the Streaming SIMD Extensions (SSE). With one processor core of Intel Core i7-2600 processor (8 MB cache and 3.40 GHz) based on Sandy Bridge micro-architecture, we implemented a fourth-order Hermite scheme with individual timestep scheme (Makino and Aarseth, 1992), and achieved the performance of ∼20 giga floating point number operations per second (GFLOPS) for double-precision accuracy, which is two times and five times higher than that of the previously developed code implemented with the SSE instructions (Nitadori et al., 2006b), and that of a code implemented without any explicit use of SIMD instructions with the same processor core, respectively. We have parallelized the code by using so-called NINJA scheme (Nitadori et al., 2006a), and achieved ∼90 GFLOPS for a system containing more than N = 8192 particles with 8 MPI processes on four cores. We expect to achieve about 10 tera FLOPS (TFLOPS) for a self-gravitating collisional system with N ∼ 105 on massively parallel systems with at most 800 cores with Sandy Bridge micro-architecture. This performance will be comparable to that of Graphic Processing Unit (GPU) cluster systems, such as the one with about 200 Tesla C1070 GPUs (Spurzem et al., 2010). This paper offers an alternative to collisional N-body simulations with GRAPEs and GPUs.  相似文献   
8.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   
9.
Fine textures of exsolution lamellae and interface boundaries between augite and pigeonite in augite crystals from Skaergaard ferrogabbro 4430 have been studied by high resolution electron microscopy and X-ray methods. Thick pigeonite lamellae have higher densities of (100) stacking faults than thin lamellae. The displacement vector of the faults has been determined as 5/6c from the measured density of faults and the relative rotation of the augite and pigeonite lattices. The augite and pigeonite lattices are apparently coherent, and no growth ledges were observed at the interfaces. The stacking faults are often combined with the antiphase boundary of pigeonite resulting in a total displacement vector of 1/2(a+b)+5/6c. The observation of thick and thin pigeonite lamellae indicated that the thickening of (001) pigeonite lamellae was controlled by coherency strains accumulated at the interfaces between augite and pigeonite.  相似文献   
10.
A practical method is presented for determining three‐dimensional S‐wave velocity (VS) profile from microtremor measurements. Frequency–wave number (fk) spectral analyses of microtremor array records are combined, for this purpose, with microtremor horizontal‐to‐vertical (H/V) spectral ratio techniques. To demonstrate the effectiveness of the proposed method, microtremor measurements using arrays of sensors were conducted at six sites in the city of Kushiro, Japan. The spectral analyses of the array records yield dispersion characteristics of Rayleigh waves and H/V spectra of surface waves, and joint inversion of these data results in VS profiles down to bedrock at the sites. Conventional microtremor measurements were performed at 230 stations within Kushiro city, resulting in the H/V spectra within the city. Three‐dimensional VS structure is then estimated from inversion of the H/V spectra with the VS values determined from the microtremor array data. This reveals three‐dimensional VS profile of Kushiro city, together with an unknown hidden valley that crosses the central part of the city. The estimated VS profile is consistent with available velocity logs and results of subsequent borings, indicating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号