首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
大气科学   4篇
地球物理   2篇
地质学   41篇
海洋学   2篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   10篇
  2006年   6篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1990年   1篇
  1984年   1篇
  1980年   2篇
排序方式: 共有49条查询结果,搜索用时 15 毫秒
1.
The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.  相似文献   
2.
3.
Oil- and gas-bearing basins of the World Ocean spreading to the continental shelf and foothill are considered. Large hydrocarbon resources, including oil pools have been discovered in the deep-water basins. The basins are confined to passive continental margins and characterized by the common mechanism of formation. Oil and gas (hereafter, petroleum) generation and accumulation are dictated by the optimum specifics of source and reservoir rocks accumulated under favorable conditions of rifts and deep-sea fans. Halokinesis played an important role in the formation of traps and migration of hydrocarbons. The global experience shows that the northern, eastern, and southern shelves of the Russian seas, as well as their continental slopes and foothills, have a big petroleum potential.  相似文献   
4.
Summary Tropical cyclone (TC)—ocena feedbacks are studied using a coupled tropical cyclone-ocean model consisting of an eightlayer triply-nested movable grid model of a TC and a three-layer primitive equation ocean model. The numerical results indicate that the TC-ocean interaction influences intensities, structures, and the trajectories of tropical cyclones. Two possible mechanisms, barotropic and baroclinic, influencing TC tracks under TC-ocean interaction are suggested. The barotropic mechanism is related to the changes of the vertically averaged TC structure, induced by the TC-ocean coupling. The baroclinic mechanism is related to the asymmetry of the condensation heating within the TC caused by the asymmetry of heat and moisture fluxes at the sea surface. This asymmetry arises due to the asymmetry in sea surface cooling relative to the storm center. The experiments indicate that the influence of TC-ocean interaction on the TC tracks is the greatest for the case of a zero background flow. In the case of a non-zero background flow the sensitivity of storm tracks to the coupling with the ocean decreases. It is found that the influence of the ocean coupling on the TC track is quite sensitive to the method of convective heating parameterization in the TC model. The TC-ocean interaction also results in a change of the amount and spatial distribution of precipitation.  相似文献   
5.
6.
7.
8.
An attempt is made to characterize an assembly of Arctic tectonic units formed before the opening of the Arctic Ocean. This assembly comprises the epi-Grenville Arctida Craton (a fragment of Rodinia) and the marginal parts of the Precambrian Laurentia, Baltica, and Siberian cratons. The cratons are amalgamated by orogenic belts (trails of formerly closed oceans). These are the Late Neoproterozoic belts (Baikalides), Middle Paleozoic belts (Caledonides), Permo-Triassic belts (Hercynides), and Early Cretaceous belts (Late Kimmerides). Arctida encompasses an area from the Svalbard Archipelago in the west to North Alaska in the east. The Svalbard, Barents, Kara, and other cratons are often considered independent Precambrian minicratons, but actually they are constituents of Arctida subsequently broken down into several blocks. The Neoproterozoic orogenic belt extends as a discontinuous tract from the Barents-Ural-Novaya Zemlya region via the Taimyr Peninsula and shelf of the East Siberian Sea to North Alaska as an arcuate framework of Arctida, which separates it from the Baltica and Siberian cratons. The Caledonian orogenic belt consisting of the Scandian and Ellesmerian segments frames Arctida on the opposite side, separating it from the Laurentian Craton. The opposite position of the Baikalian and Caledonian orogenic belts in the Arctida framework makes it possible to judge about the time when the boundaries of this craton formed as a result of its detachment from Rodinia. The Hercynian orogenic belt in the Arctic Region comprises the Novozemel’sky (Novaya Zemlya) and Taimyr segments, which initially were an ending of the Ural Hercynides subsequenly separated by a strike-slip fault. The Mid-Cretaceous (Late Kimmerian) orogenic belt as an offset of Pacific is divergent. It was formed under the effect of the opened Canada Basin and accretion and collision at the Pacific margins. The undertaken typification of pre-Late Mesozoic tectonic units, for the time being debatable in some aspects, allows reconstruction of the oceanic basins that predated the formation of the Arctic Ocean.  相似文献   
9.
Numerous riftogenic structures of different ages and orientations are widespread on the vast shelf of the Eastern Arctic region. A schematic tectonic map presents the main structural elements of the Upper Brooksian (Cretaceous-Cenozoic) unit, through which contours of the Ellesmerian (Late Devonian-Jurassic) structures, being the most enriched in hydrocarbon resources in the region under consideration, are seen. Three large sedimentation basins are identified in the upper unit: the Vil’kitskii-North Chukchi, the South Chukchi, and the East Chukchi basins separated by the Central Chukchi Rise, which was most active at the Ellesmerian stage. By analogy with the areas studied both on the shelf and on the continental slope, models of the formation and accumulation of hydrocarbons are presented for each of these three basins, thus, allowing one to outline the zones prospective for gas and oil accumulation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号