首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
天文学   1篇
  2004年   2篇
  2002年   1篇
排序方式: 共有3条查询结果,搜索用时 93 毫秒
1
1.
Abstract— Chicxulub and Sudbury are 2 of the largest impact structures on Earth. Research at the buried but well‐preserved Chicxulub crater in Mexico has identified 6 concentric structural rings. In an analysis of the preserved structural elements in the eroded and tectonically deformed Sudbury structure in Canada, we identified ring‐like structures corresponding in both radius and nature to 5 out of the 6 rings at Chicxulub. At Sudbury, the inner topographic peak ring is missing, which if it existed, has been eroded. Reconstructions of the transient cavities for each crater produce the same range of possible diameters: 80–110 km. The close correspondence of structural elements between Chicxulub and Sudbury suggests that these 2 impact structures are approximately the same size, both having a main structural basin diameter of ?150 km and outer ring diameters of ?200 km and ?260 km. This similarity in size and structure allows us to combine information from the 2 structures to assess the production of shock melt (melt produced directly upon decompression from high pressure impact) and impact melt (shock melt and melt derived from the digestion of entrained clasts and erosion of the crater wall) in large impacts. Our empirical comparisons suggest that Sudbury has ?70% more impact melt than does Chicxulub (?31,000 versus ?18,000 km3) and 85% more shock melt (27,000 km3 versus 14,500 km3). To examine possible causes for this difference, we develop an empirical method for estimating the amount of shock melt at each crater and then model the formation of shock melt in both comet and asteroid impacts. We use an analytical model that gives energy scaling of shock melt production in close agreement with more computationally intense numerical models. The results demonstrate that the differences in melt volumes can be readily explained if Chicxulub was an asteroid impact and Sudbury was a comet impact. The estimated 70% difference in melt volumes can be explained by crater size differences only if the extremes in the possible range of melt volumes and crater sizes are invoked. Preheating of the target rocks at Sudbury by the Penokean Orogeny cannot explain the excess melt at Sudbury, the majority of which resides in the suevite. The greater amount of suevite at Sudbury compared to Chicxulub may be due to the dispersal of shock melt by cometary volatiles at Sudbury.  相似文献   
2.
A bimodal volcanic sequence of 230 m thickness on Skiff Bank,a western salient of the northern Kerguelen Plateau, was drilledduring ODP Leg 183. The sequence comprises three main units:a mafic unit of trachybasalt flows sandwiched between two unitsof trachytic or rhyolitic flows and volcaniclastic rocks. Althoughinterpretation is complicated by moderate to strong alterationof the rocks, their original chemical character can be establishedusing the least mobile major and trace elements (Al, Th, highfield strength elements and rare earth elements). High concentrationsof alkalis and incompatible trace elements indicate that bothmafic and felsic rocks are alkalic. The felsic rocks may havebeen derived by partial melting of mafic rocks, followed byfractionation of feldspar, clinopyroxene, Fe–Ti oxidesand apatite. The mafic and felsic rocks have similar Nd andPb isotopic compositions; 206Pb/204Pb ratios are low (17·5–18·0)but, like the 143Nd/144Nd ratios (0·5125–0·5126),they are comparable with those of basalts from the central andsouthern Kerguelen Plateau (e.g. Sites 747, 749, 750). The Srisotopic system is perturbed by later alteration. There is nochemical or isotopic evidence for a continental crustal component.The bimodal alkalic character and the presence of quartz-phyricrhyolites is interpreted to indicate that the sequence formspart of a shield volcano built upon the volcanic plateau. Theage of 68 Ma, obtained on Site 1139 rocks by Duncan (A timeframe for construction of the Kerguelen Plateau and Broken Ridge,Journal of Petrology 43, 1109–1119, 2002), provides onlya minimum age for the underlying flood volcanic rocks. The highage indicates none the less that Skiff Bank is not the presentlocation of the Kerguelen plume. KEY WORDS: Ocean Drilling Program; Kerguelen Plateau; Skiff Bank  相似文献   
3.
Flood and Shield Basalts from Ethiopia: Magmas from the African Superswell   总被引:24,自引:1,他引:24  
The Ethiopian plateau is made up of several distinct volcaniccentres of different ages and magmatic affinities. In the NE,a thick sequence of 30 Ma flood basalts is overlain by the 30Ma Simien shield volcano. The flood basalts and most of thisshield volcano, except for a thin veneer of alkali basalt, aretholeiitic. In the centre of the province, a far thinner sequenceof flood basalt is overlain by the 22 Ma Choke and Guguftu shieldvolcanoes. Like the underlying flood basalts, these shieldsare composed of alkaline lavas. A third type of magma, whichalso erupted at 30 Ma, is more magnesian, alkaline and stronglyenriched in incompatible trace elements. Eruption of this magmawas confined to the NE of the province, a region where the lavaflows are steeply tilted as a result of deformation contemporaneouswith their emplacement. Younger shields (e.g. Mt Guna, 10·7Ma) are composed of Si-undersaturated lavas. The three maintypes of magma have very different major and trace element characteristicsranging from compositions low in incompatible elements in thetholeiites [e.g. 10 ppm La at 7 wt % MgO (=La7), La/Yb = 4·2],moderate in the alkali basalts (La7 = 24, La/Yb = 9·2),and very high in the magnesian alkaline magmas (La7 = 43, La/Yb= 17). Although their Nd and Sr isotope compositions are similar,Pb isotopic compositions vary considerably; 206Pb/204Pb variesin the range of  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号