首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   594篇
  免费   22篇
  国内免费   4篇
测绘学   12篇
大气科学   24篇
地球物理   131篇
地质学   267篇
海洋学   51篇
天文学   65篇
综合类   5篇
自然地理   65篇
  2020年   6篇
  2019年   7篇
  2018年   8篇
  2017年   17篇
  2016年   12篇
  2015年   5篇
  2014年   18篇
  2013年   38篇
  2012年   18篇
  2011年   22篇
  2010年   27篇
  2009年   32篇
  2008年   29篇
  2007年   27篇
  2006年   23篇
  2005年   10篇
  2004年   22篇
  2003年   14篇
  2002年   12篇
  2001年   12篇
  2000年   8篇
  1999年   15篇
  1998年   12篇
  1997年   9篇
  1995年   6篇
  1992年   5篇
  1990年   10篇
  1989年   7篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1984年   8篇
  1983年   10篇
  1982年   9篇
  1981年   8篇
  1980年   4篇
  1979年   4篇
  1977年   5篇
  1976年   5篇
  1975年   5篇
  1973年   7篇
  1971年   4篇
  1970年   9篇
  1969年   5篇
  1965年   5篇
  1962年   4篇
  1954年   5篇
  1952年   8篇
  1949年   4篇
  1939年   4篇
排序方式: 共有620条查询结果,搜索用时 62 毫秒
1.
Abstract— Impact-induced comminution of planetary surfaces is pervasive throughout the solar system and occurs on submillimeter to global scales, resulting in comminution products that range from fine-grained surface soils, to massive, polymict ejecta deposits, to collisionally fragmented objects. Within this wide range of comminution products, we define regoliths in a narrow sense as materials that were processed by repetitive impacts to dimensional scales comparable to or smaller than that of component minerals of the progenitor rock(s). In this paper, we summarize a wide variety of impact experiments and other observations that were primarily intended to understand the evolution of regoliths on lunar basalt flows, and we discuss some of their implications for asteroidal surfaces. Cratering experiments in both rock and noncohesive materials, combined with photogeologic observations of the lunar surface, demonstrate that craters <500 m in diameter contribute most to the excavation of local bedrock for subsequent processing by micrometeorites. The overall excavation rate and, thus, growth rate of the debris layer decreases with time, because the increasingly thicker fragmental layer will prevent progressively larger projectiles from reaching bedrock. Typical growth rates for a 5 m thick lunar soil layer are initially (~≥3 Ga ago) a few mm/Ma and slowed to <1 mm/Ma at present. The coarse-grained crater ejecta are efficiently comminuted by collisional fragmentation processes, and the mean residence time of a 1 kg rock is typically 10 Ma. The actual comminution of either lithic or monomineralic detritus is highly mineral specific, with feldspar and mesostasis comminuting preferentially over pyroxene and olivine, thus resulting in mechanically fractionated fines, especially at grain sizes <20 μm. Such fractionated fines also participate preferentially in the shock melting of lunar soils, thus giving rise to “agglutinate” melts. As a consequence, agglutinate melts are systematically enriched in feldspar components relative to the bulk composition of their respective host soil(s). Compositionally homogeneous, impact derived glass beads in lunar soils seem to result from micrometeorite impacts on rock surfaces, reflecting lithic regolith components and associated mineral mixtures. Cumulatively, experimental and observational evidence from lunar mare soils suggests that regoliths derive substantially from the comminution of local bedrock; the addition of foreign, exotic components is not necessary to explain the modal and chemical compositions of diverse grain size fractions from typical lunar soils. Regoliths on asteroids are qualitatively different from those of the Moon. The modest impact velocities in the asteroid belt, some 5 km s?1, are barely sufficient to produce impact melts. Also, substantially more crater mass is being displaced on low-gravity asteroids compared to the Moon; collisional processing of surface boulders should therefore be more prominent in producing comminuted asteroid surfaces. These processes combine into asteroidal surface deposits that have suffered modest levels of shock metamorphism compared to the Moon. Impact melting does not seem to be a significant process under these conditions. However, the role of cometary particles encountering asteroid surfaces at presumably higher velocities has not been addressed in the past. Unfortunately, the asteroidal surface processes that seemingly modify the spectral properties of ordinary chondrites to match telescopically obtained spectra of S-type asteroids remain poorly understood at present, despite the extensive experimental and theoretical insights summarized in this report and our fairly mature understanding of lunar surface processes and regolith evolution.  相似文献   
2.
This is a study of Late Devensian drumlins formed in southern Anglesey and Arvon, northwest Wales. This area was affected by ice sheet coalescence when the Welsh ice sheet met with the lrish Sea ice sheet, and drumlins were formed once the two had coalesced. It is suggested that the drumlins were the result of net subglacial soft-bed erosion, and that they represent more resistant cores within the subglacial deforming layer. The drumlins have either gravel or till cores, and where the core was deformable, large-scale compressive glaciotectonic structures were seen (e.g. Dinas Dinlle) with local subglacial compression of –59%. Where the cores were more resistant (e.g. Lleiniog) these were not deformed but remained as more competent masses within the deforming layer. It is suggested that the less competent material flowed around the cores, some remaining as a thin carapace, but most of the material being removed down glacier, leaving the drumlins as erosional remnants. In northwest Wales there is a multi-till sequence that traditionally has been interpreted as having been deposited as the result of separate ice-sheet advances and retreats. However, in this study, it is suggested that the different tills were deposited as the result of ice-sheet coalescence, and that sites such as Dinas Dinlle do not show evidence of a major readvance in the retreat of the Devensian ice, but are indicative of continuously changing conditions within the subglacial deforming bed.  相似文献   
3.
Primary and pseudosecondary fluid inclusions occur in oscillatory-and sector-zoned omphacite in eclogitic veins from the Monviso ophiolitic complex in the Western Alps. The inclusions contain aqueous brines and daughter crystals of halite, sylvite, calcite, dolomite, albite, anhydrite and/or gypsum, barite, baddeleyite, rutile, sphene, Fe oxides, pyrite and monazite. This daughter mineral suite indicates high solubilites of Na, K, Ca, Mg, Fe, Zr, Ti, P, Ba, Ce, La, Th, and S species and provides direct evidence for transport of high-fieldstrenght, large-ion-lithophile, and light-rare-earth elements as dissolved species during subduction. Fluid-inclusion heterogeneities preserved within and between adjacent grains in the veins, however, suggest that the scale of fluid equilibration was small. A crack-seal geometry in some of the veins implies that fluid release in pulses rather than steady flow controlled mineral deposition and growth in the veins. From these observations, we develop a model of fluid release and entrapment in which pulses of fluid are associated in time with increments of shear and tensile failure; the rate of fluid release and the reduction in porosity both depend on the rate of plastic flow. Vein fluids may initially be derived from decreptitation of early fluid inclusions in the host eclogites, Small-scale fluid heterogeneities implied by the fluid inclusions in the veins are best interpreted in terms of limited fluid flow, and hence limited metasomatism. We conclude that element recycling into the mantle wedge during subduction will depend at least as strongly on fluid transport mechanisms as on element solubilities in the fluid phase. At Monviso, despite evidence for high trace element solubilities in saline brines, the elements were not removed from the downgoing slab prior to teaching depths of 40 km.  相似文献   
4.
Global oscillations of the Sun (r-modes) with very long periods 1 month are reviewed and studied. Such modes would be trapped in an acoustic cavity formed either by most of the convective envelope or by most of the radiative interior. A turning point frequency giving cavity boundaries is defined and the run of eigenvalues for angular harmonics l 3 are plotted for a conventional solar convection zone. The r-modes show equipartition of oscillatory energy among shells which each contain one antinode in the radial dimension. Toroidal motion is dominant to at least the 14th radial harmonic mode. Viscosity from convective turbulence is strong and would damp any mode in just a few solar rotations if it were the only significant nonadiabatic effect. Radial fine splitting which lifts the degeneracy in n is very small (20 nHz or less) for all n 14 trapped in the envelope. But, if splitting could be detected, we would have a valuable new constraint on solar convection theories.  相似文献   
5.
6.
The paper reports computed data on the seasonal variability of the Atlantic Ocean currents which were obtained through numerical integration (using conservative difference schemes) of non-linear equations of hydrothermodynamics taking into account an upper quasi-homogeneous layer and the bottom topography. The seasonal variability of the meridional heat transfer is discussed. The results were obtained using an adaptation approach.Translated by Vladimir A. Puchkin.  相似文献   
7.
 Between 2 and 6 February, 1995, a 25 km2 area at the Dry Tortugas (Florida Keys) was surveyed with a 100 kHz side-scan sonar system and 3.5-kHz subbottom profiler. The side-scan system revealed a pattern of alternating high and low backscatter. The subbottom profiler showed areas with no acoustic penetration between sediment troughs. The combination of both methods allowed delineation of the boundaries in high-backscatter regions, and sediment samples allowed correlations between high backscatter and coarser-grained sediments.  相似文献   
8.
9.
10.
In order to evaluate rates of tectonometamorphic processes, growth rates of garnets from metamorphic rocks of the Tauern Window, Eastern Alps were measured using Rb-Sr isotopes. The garnet growth rates were determined from Rb-Sr isotopic zonation of single garnet crystals and the Rb-Sr isotopic compositions of their associated rock matrices. Garnets were analyzed from the Upper Schieferhülle (USH) and Lower Schieferhülle, (LSH) within the Tauern Window. Two garnets from the USH grew at rates of 0.67 –0.13 +0.19 mm/million years and 0.88 –0.19 +0.34 mm/million years, respectively, indicating an average growth duration of 5.4±1.7 million years. The duration of growth coupled with the amount of rotation recorded by inclusion trails in the USH garnets yields an average shear-strain rate during garnet growth of 2.7 –0.7 +1.2 ×10-14 s-1. Garnet growth in the sample from the USH occurred between 35.4±0.6 and 30±0.8 Ma. The garnet from the LSH grew at a rate of 0.23±0.015 mm/million years between 62±1.5 Ma and 30.2±1.5 Ma. Contemporaneous cessation of garnet growth in both units at 30 Ma is in accord with previous dating of the thermal peak of metamorphism in the Tauern Window. Correlation with previously published pressure-temperature paths for garnets from the USH and LSH yields approximate rates of burial, exhumation and heating during garnet growth. Assuming that theseP — T paths are applicable to the garnets in this study, the contemporaneous exhumation rates recorded by garnet in the USH and LSH were approximately 4 –2 +3 mm/year and 2±1 mm/year, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号