首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   2篇
自然地理   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A 2 m thick laminated lacustrine deposit of silt and clay recovered from the high-latitudinal site at Sokli (northern Finland) provides a unique mid-Weichselian fossil record for Fennoscandia. High-resolution botanical and zoological analyses of the lacustrine deposit allow detailed reconstruction of the regional vegetational development and of the history of the lake and the wetland ecosystem within the Sokli basin during the early part of the Weichselian Middle Pleniglacial (=equivalent to Marine Isotope Stage (MIS) 3). The inferred terrestrial vegetation represented by the Sokli MIS 3 sequence (so-called Tulppio Interstadial) was probably low-arctic tundra, treeless but with shrub elements including juniper, willow, dwarf birch, ericoids, lycopods and a rich herb flora with a variety of arctic–alpine taxa and heliophilous, pioneer elements. The presence of herbs such as Rubus chamaemorus, Epilobium palustre, Potentilla palustris and Sphagnum, Drepanocladus and other mosses suggests that the lake was fringed by wet meadows and peatlands or peaty telmatic communities. The distributional ranges of pine and tree birch were probably only a few hundred kilometres south or southeast of Sokli. This is concordant with evidence for the presence of boreal tree taxa during the MIS 3 in the Baltic countries and further east in Europe, but contradicts with the commonly inferred treeless tundra or grass-dominated steppe conditions in central Europe.  相似文献   
2.
Anjar, J., Larsen, N. K., Björck, S., Adrielsson, L. & Filipsson, H. L. 2010: MIS 3 marine and lacustrine sediments at Kriegers Flak, southwestern Baltic Sea. Boreas, 10.1111/j.1502‐3885.2010.00139.x. ISSN 0300‐9483. Sediment cores from the Kriegers Flak area in the southwestern Baltic Sea show a distinct lithological succession, starting with a lower diamict that is overlain by a c. 10 m thick clay unit that contains peat, gyttja and other organic remains. On top follows an upper diamict that is inter‐layered with sorted sediments and overlain by an upward‐coarsening sequence with molluscs. In this paper we focus on the clay unit, which has been subdivided into three subunits: (A) lower clay with benthic foraminifera and with diamict beds in the lower part; (B) thin beds of gyttja and peat, which have been radiocarbon‐dated to 31–35 14C kyr BP (c. 36–41 cal. kyr BP); and (C) upper clay unit. Based on the preliminary results we suggest the following depositional model: fine‐grained sediments interbedded with diamict in the lower part (subunit A) were deposited in a brackish basin during a retreat of the Scandinavian Ice Sheet, probably during the Middle Weichselian. Around 40 kyr BP the area turned into a wetland with small ponds (subunit B). A transgression, possibly caused by the damming of the Baltic Basin during the Kattegat advance at 29 kyr BP, led to the deposition of massive clay (subunit C). The data presented here provide new information about the paleoenvironmental changes occurring in the Baltic Basin following the Middle Weichselian glaciation.  相似文献   
3.
Climate change is already occurring in the Arctic and the Arctic Climate Impact Assessment recently concluded that future climate change could be devastating for Inuit. This paper characterises vulnerability to climate change in two Inuit communities in the Canadian territory of Nunavut, focusing on the resource harvesting sector. In both communities, Inuit have demonstrated significant adaptability in the face of current changes in climatic conditions. This adaptability is facilitated by traditional Inuit knowledge, strong social networks, flexibility in resource use, and institutional support. Changing Inuit livelihoods, however, have undermined certain aspects of adaptive capacity and have resulted in emerging vulnerabilities. Global and regional climate projections indicate that climatic conditions which currently pose risks are expected to be negatively affected by future climate change. These projections are not without precedent and analysis of current vulnerability and identification of adaptation constraints by Inuit in the two communities indicate the continued importance of traditional coping mechanisms. The ability to draw on these coping mechanisms in light of future climate change, however, will be unequal and the research indicates that young Inuit and those without access to economic resources, in particular, are vulnerable.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号