首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  国内免费   2篇
测绘学   1篇
地球物理   4篇
地质学   11篇
  2023年   1篇
  2020年   2篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   3篇
  1986年   1篇
  1980年   1篇
排序方式: 共有16条查询结果,搜索用时 203 毫秒
1.
The character of convergence along the Arabian–Iranian plate boundary changes radically eastward from the Zagros ranges to the Makran region. This appears to be due to collision of continental crust in the west, in contrast to subduction of oceanic crust in the east. The Makran subduction zone with a length of about 900 km display progressively older and highly deformed sedimentary units northward from the coast, together with an increase in elevation of the ranges. North of the Makran ranges are large subsiding basins, flanked to the north by active volcanoes. Based on 2D seismic reflection data obtained in this study, the main structural provinces and elements in the Gulf of Oman include: (i) the structural elements on the northeastern part of the Arabian Plate and, (ii) the Offshore Makran Accretionary Complex. Based on detailed analysis of these data on the northeastern part of the Arabian Plate five structural provinces and elements—the Musendam High, the Musendam Peneplain, the Musendam Slope, the Dibba Zone, and the Abyssal Plain have been identified. Further, the Offshore Makran Accretionary Complex shown is to consist Accretionary Prism and the For-Arc Basin, while the Accretionary Prism has been subdivided into the Accretionary Wedge and the Accreted/Colored Mélange. Lastly, it is important to note that the Makran subduction zone lacks the trench. The identification of these structural elements should help in better understanding the seismicity of the Makran region in general and the subduction zone in particular. The 1945 magnitude 8.1 tsunamigenic earthquake of the Makran and some other historical events are illustrative of the coastal region’s vulnerability to future tsunami in the area, and such data should be of value to the developing Indian Ocean Tsunami Warning System.  相似文献   
2.
3.
An integrated geological-petrophysical analysis of the rudist-bearing sequence of the Cretaceous Sarvak Formation is given one giant oilfield, and provides an improved understanding of this main reservoir in the Abadan Plain, in the Zagros Basin, SW Iran. The main objective of this study is to evaluate reservoir potential of the Sarvak Formation, and then to utilize the calibrated well log signature to correlate reservoir potential in un-cored wells. Eight main facies are recognized and categori...  相似文献   
4.
Wave data assimilation using a hybrid approach in the Persian Gulf   总被引:1,自引:1,他引:0  
The main goal of this study is to develop an efficient approach for the assimilation of the hindcasted wave parameters in the Persian Gulf. Hence, the third generation SWAN model was employed for wave modeling forced by the 6-h ECMWF wind data with a resolution of 0.5°. In situ wave measurements at two stations were utilized to evaluate the assimilation approaches. It was found that since the model errors are not the same for wave height and period, adaptation of model parameter does not result in simultaneous and comprehensive improvement of them. Therefore, an approach based on the error prediction and updating of output variables was employed to modify wave height and period. In this approach, artificial neural networks (ANNs) were used to estimate the deviations between the simulated and measured wave parameters. The results showed that updating of output variables leads to significant improvement in a wide range of the predicted wave characteristics. It was revealed that the best input parameters for error prediction networks are mean wind speed, mean wind direction, wind duration, and the wave parameters. In addition, combination of the ANN estimated error with numerically modeled wave parameters leads to further improvement in the predicted wave parameters in contrast to direct estimation of the parameters by ANN.  相似文献   
5.
6.
A structural cross-section constructed across the Zagros Fold-Thrust Belt covering the Abadan Plain, Dezful Embayment, and Izeh Zone applied 2D and 3D seismic data, well data, surface and subsurface geological maps, satellite images and field reconnaissance. Besides validation and modification of the cross-section, restoration allows better understanding of the geology, structural style and stratigraphy of the Zagros basin. In the area of interest, the Hormuz basal decollement and the Gachsaran detachment play the most significant roles in the structural style and deformation of the Zagros belt. More complexity is associated with interval decollements such as Triassic evaporites, Albian shales and Eocene marls. A variety of lithotectonic units and detachment surfaces confound any estimation of shortening, which generally decreases with increasing depth. Deformation completely differs in the Abadan Plain, Dezful Embayment and Izeh Zone because of different sedimentation histories and tectonic evolution; gentle and young structures can be interpreted as pre-collisional structures of the Dezful Embayment before the Late Cretaceous. After the Late Cretaceous, the Mountain Front Fault is the main control of sedimentation and deformation in the Zagros Basin, and this completely characterizes fold style and geometry within the Dezful Embayment and the Izeh Zone.  相似文献   
7.
Natural Hazards - Organization of volunteer personnel and proper management of these enormous and valuable human resources to make that most of their scientific, experiential, physical, and...  相似文献   
8.
Soil is a dynamic natural body and fundamental resource. Human activities influence intensively the natural processes in soils. They modify and accelerate the development of soils. In this investigation, the deposition of colluvial sediments (colluviation) and soil formation are proposed as geoindicators for a better understanding of long-term environmental changes and environmental impact assessment. Deposition of colluvial sediments during several time periods and subsequent soil formation under different land-use systems reflect important aspects on the long-term human interference in the environment. In this study, we hypothesize that intensive human activities and environmental changes during middle and late Holocene are responsible for a strong modification of soils in an investigation area in Schleswig–Holstein (Germany). Soil age information together with geomorphological data, physical, chemical and biological soil properties provide the database which is necessary to study the types and rates of colluviation and soil formation. After the investigation with a high resolution in time and space, results show that middle and late Holocene land-use changes and land management are responsible for soil formation in colluvial layers. Properties of soils and sediments vary intensively from Mesolithic until Modern times. Intensive soil formation took place during periods of geomorphodynamic stability in dense woodland. Evidence in our investigations shows that colluviation has a strong relation with decision-making and environmental degradation in the past. This confirms, too, that a geoindicator concept is needed to understand and to monitor long-term environmental changes and degradation.  相似文献   
9.
The force analogy method(FAM) is considered as one of the most time-saving and cost-efficient methods for analyzing frames. Through a set of assumptions and restoring forces, FAM analyzes nonlinear frames responses through Hooke's law. This study evaluates the effect of element type on FAM through numerical and experimental tests. The conventional Euler Bernoulli(EB) element is replaced by the Timoshenko(TS) beam-column element and the results are interpreted and compared with experimental findings. Three experimental tests were conducted for benchmarking and comparison purposes via 2 D aluminum frames. The results indicated that during the analysis, when the frame response is in the linear region, there is no difference between the element types in the response of the frames. When the frame entered the plastic region, the frames which were analyzed by the TS element revealed closer responses to the experimental outcomes. The gap between the results of the frame which was analyzed by EB and TS enlarged especially when the frame experienced a sharp or huge rotation of more than 0.2 rad. The final recorded deformations based on the TS element revealed an accuracy between 98.05% to 98.65%, while the EB element showed 14.66% to 45.14% for rotations of more than 0.2 rad at plastic hinge locations(PHLs).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号