首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
测绘学   1篇
大气科学   1篇
地球物理   3篇
地质学   18篇
海洋学   1篇
自然地理   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   2篇
  2011年   2篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有27条查询结果,搜索用时 17 毫秒
1.
2.
We present new Fe and Si isotope ratio data for the Torres del Paine igneous complex in southern Chile. The multi-composition pluton consists of an approximately 1 km vertical exposure of homogenous granite overlying a contemporaneous 250-m-thick mafic gabbro suite. This first-of-its-kind spatially dependent Fe and Si isotope investigation of a convergent margin-related pluton aims to understand the nature of granite and silicic igneous rock formation. Results collected by MC-ICP-MS show a trend of increasing δ56Fe and δ30Si with increasing silica content as well as a systematic increase in δ56Fe away from the mafic base of the pluton. The marginal Torres del Paine granites have heavier Fe isotope signatures (δ56Fe = +0.25 ± 0.02 2se) compared to granites found in the interior pluton (δ56Fe = +0.17 ± 0.02 2se). Cerro Toro country rock values are isotopically light in both Fe and Si isotopic systems (δ56Fe = +0.05 ± 0.02 ‰; δ30Si = ?0.38 ± 0.07 ‰). The variations in the Fe and Si isotopic data cannot be accounted for by local assimilation of the wall rocks, in situ fractional crystallization, late-stage fluid exsolution or some combination of these processes. Instead, we conclude that thermal diffusion or source magma variation is the most likely process producing Fe isotope ratio variations in the Torres del Paine pluton.  相似文献   
3.
4.
5.
The formation of the ion pairs MgSO4 and NaSO4? was investigated calorimetrically at 0.75 M ionic strength, 25°C, 1 atm. Simultaneous determinations of enthalpy changes, ΔH10, and stability constants, K1, were not possible, and values of K1 determined independently had to be introduced for the calculation of ΔH10. The values of ΔH10 obtained were 1–3 kJ mol?1 for MgSO4 and 0 kJ mol?1 for NaSO4?.  相似文献   
6.
The production of Earth’s granitoids is generally attributed to magma intrusion, fractional crystallization and assimilation but the details of how granitoid plutons form remains widely debated. In light of recent experimental results which indicate that partially molten wet andesite in a temperature gradient evolves into a granitic bulk composition at the cooler end of the gradient (in a process called thermal migration), I present a model for at least some of Earth’s granitoids forming by a top-down thermal migration zone refining process. According to this model, convergent margin igneous activity builds a thick volcanic pile which becomes a barrier to further ascent of magma, leading to magma underplating by injection of sills at the base of the pile. When magmas arrive at the location of underplating, they react and release heat and water to the overlying materials (previously intruded sills), resulting in a downward moving zone having a near-steady-state temperature gradient. This leads to compositional differentiation by wet thermal migration taking place over million year time scales; this in situ differentiation process occurs in the middle of the underplated region but not on the more rapidly cooled edges of the sills. Modeling using the IRIDIUM program shows this process can produce sequences of granitoid that are kilometer or greater in thickness; regardless of granitoid thickness, the bottom of the system maintains a near constant thickness of hornblende gabbros. The model provides a logical connection between andesitic stratovolcanoes and underlying, more silicic intrusive series plutons—both reflect ascent of andesitic composition magmas, with the implication that convergent margin magmatic systems evolve temporally from stratovolcanoes to plutons once magma ascent is inhibited and underplating begins.The model provides an alternative to the standard view that granitoids result from cooling of large bodies of magma and could help to resolve long-standing questions concerning: geophysical observations of magma chambers; the compositions of minerals in granitoids; and the development of preferred mineral orientations in granitoids. It provides a consistent model in that it explains the systematic normal compositional zoning of plutons within the context of an incremental growth process dictated by geochronology. Most importantly, the model is predictive, emphasizing the importance of examining granitoids in the vertical dimension. The hypothesis that thermal migration plays a role in granitoid formation can be tested by analysis of non-traditional stable isotope systems such as Fe, Mg and Si that should show a signature of thermal diffusion. The model predicts that the tops of overlying granitoids will have relatively heavy isotopic compositions whereas underlying hornblende gabbros will have relatively light isotopic compositions. Examination of existing iron isotope data and new silicon isotope data are consistent with the hypothesis and point to the need for more thorough testing.  相似文献   
7.
We present data for U and its decay series nuclides 230Th, 226Ra, 231Pa, and 210Po for 14 lavas from Kick’em Jenny (KEJ) submarine volcano to constrain the time-scales and processes of magmatism in the Southern Lesser Antilles, the arc having the globally lowest plate convergence rate. Although these samples are thought to have been erupted in the last century, most have (226Ra)/(210Po) within ±15% of unity. Ten out of 14 samples have significant 226Ra excesses over 230Th, with (226Ra)/(230Th) up to 2.97, while four samples are in 226Ra-230Th equilibrium within error. All KEJ samples have high (231Pa)/(235U), ranging from 1.56 to 2.64 and high 238U excesses (up to 43%), providing a global end-member of high 238U and high 231Pa excesses. Negative correlations between Sr, sensitive to plagioclase fractionation, and Ho/Sm, sensitive to amphibole fractionation, or K/Rb, sensitive to open system behavior, indicate that differentiation at KEJ lavas was dominated by amphibole fractionation and open-system assimilation. While (231Pa)/(235U) does not correlate with differentiation indices such as Ho/Sm, (230Th)/(238U) shows a slight negative correlation, likely due to assimilation of materials with slightly higher (230Th)/(238U). Samples with 226Ra excess have higher Sr/Th and Ba/Th than those in 226Ra-230Th equilibrium, forming rough positive correlations of (226Ra)/(230Th) with Sr/Th and Ba/Th similar to those observed in many arc settings. We interpret these correlations to reflect a time-dependent magma differentiation process at shallow crustal levels and not the process of recent fluid addition at the slab-wedge interface.The high 231Pa excesses require an in-growth melting process operating at low melting rates and small residual porosity; such a model will also produce significant 238U-230Th and 226Ra-230Th disequilibrium in erupted lavas, meaning that signatures of recent fluid addition from the slab are unlikely to be preserved in KEJ lavas. We instead propose that most of the 238U-230Th, 226Ra-230Th, and 235U-231Pa disequilibria in erupted KEJ lavas reflect the in-growth melting process in the mantle wedge (reflecting variations in U/Th, daughter-parent ratios, fO2, and thermal structure), followed by modification by magma differentiation at crustal depths. Such a conclusion reconciles the different temporal implications from different U-series parent-daughter pairs and relaxes the time constraint on mass transfer from slab to eruption occurring in less than a few thousand years imposed by models whereby 226Ra excess is derived from the slab.  相似文献   
8.
Calcium- and aluminum-rich inclusions (CAIs), occurring in chondritic meteorites and considered the oldest materials in the solar system, can provide critical information about the environment and time scale of creation of planetary materials. However, interpretation of the trace element and isotope compositions of CAIs, particularly the light elements Li, Be, and B, is hampered by the lack of constraint on melilite-melt and spinel-melt partition coefficients. We determined melilite-melt and spinel-melt partition coefficients for 21 elements by performing controlled cooling rate (2 °C/h) experiments at 1 atmosphere pressure in sealed platinum capsules using a synthetic type B CAI melt. Trace element concentrations were measured by secondary ion mass spectrometry (SIMS) and/or laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Melilites vary only slightly in composition, ranging from Åk31-43. Results for the partitioning of trace elements between melilite and melt in three experiments and between spinel and melt in two experiments show that partition coefficients are independent of trace element concentration, are in good agreement for different analytical techniques (SIMS and LA-ICP-MS), and are in agreement with previous measurements in the literature. Partition coefficients between intermediate composition melilites and CAI melt are the following: Li, 0.5; Be, 1.0; B, 0.22; Rb, 0.012; Sr, 0.68; Zr, 0.004; Nb, 0.003; Cs, 0.002; Ba, 0.018; La, 0.056; Nd, 0.065; Sm, 0.073; Eu, 0.67; Er, 0.037; Yb, 0.018; Hf, 0.001; Ta, 0.003; Pb, 0.15; U, 0.001; Th, 0.002. Site size energetics analysis is used to assess isovalent partitioning into the different cation sites. The Young’s modulus deduced from +2 cations partitioning into the melilite X site agrees well with the bulk modulus of melilite based on X-ray diffraction methods. The changes in light element partitioning as melilite composition varies are predicted and used in several models of fractional crystallization to evaluate if the observed Li, Be, and B systematics in Allende CAI 3529-41 are consistent with crystallization from a melt. Models of crystallization agree reasonably well with observed light element variations in areas previously interpreted to be unperturbed by secondary processes [Chaussidon, M., Robert, F., McKeegan, K.D., 2006. Li and B isotopic variations in an Allende CAI: Evidence for the in situ decay of short-lived 10Be and for the possible presence of the short-lived nuclide 7Be in the early solar system. Geochim. Cosmochim. Acta70, 224-245], indicating that the trends of light elements could reflect fractional crystallization of a melt. In contrast, areas interpreted to have been affected by alteration processes are not consistent with crystallization models.  相似文献   
9.
We present a concerted international effort to cross-calibrate five synthetic Th isotope reference materials (UCSC Th "A", OU Th "U", WUN, IRMM-35 and IRMM-36), and six rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2, USGS BHVO-2, LV18) using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We then compare our new values with a compilation of literature mass spectrometric data for these reference materials and derive recommended "consensus"230Th/232Th values for each. We also present isotope dilution U and Th concentration data for four rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2).  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号