首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 859 毫秒
1
1.
The utilization of anthropogenic CO2 for enhanced oil recovery (EOR) can significantly extend the production life of an oil field, and help in the reduction of atmospheric emission of anthropogenic CO2 if sequestration is considered. This work summarizes the prospect of EOR and sequestration using CO2 flooding from an Indian mature oil field at Cambay basin through numerical modelling, simulation and pressure study based on limited data provided by the operator. To get an insight into CO2-EOR and safe storage process in this oil field, a conceptual sector model is developed and screening standard is proposed keeping in mind the major pay zone of the producing reservoir. To construct the geomodel, depth maps, well positions and coordinates, well data and well logs, perforation depths and distribution of petrophysical properties as well as fluid properties provided by the operator, has been considered. Based on the results from the present study, we identified that the reservoir has the potential for safe and economic geological sequestration of 15.04×106 metric ton CO2 in conjunction with a substantial increase in oil recovery of 10.4% of original oil in place. CO2-EOR and storage in this mature field has a bright application prospect since the findings of the present work could be a better input to manage the reservoir productivity, and the pressure field for significant enhancement of oil recovery followed by safe storage.  相似文献   
2.
The mechanical behavior and permeability of the Tuffeau de Maastricht calcarenite were studied. Compactions bands were found to form in the “transitional” regime between brittle faulting and cataclastic flow. In order to predict the formation of compaction bands, bifurcation analysis was applied on a model developed by Lade and Kim. The numerical results proved to be in good agreement with the experimental ones where the localization point was identified to be the onset of shear-enhanced compaction (a threshold in differential stress after which significant reduction of porosity is induced). Before the onset of shear-enhanced compaction, permeability was primarily controlled by the effective mean stress, independent of the deviatoric stresses. With the onset of shear-enhanced compaction, however, coupling of the deviatoric and hydrostatic stresses induced considerable permeability and porosity reduction.  相似文献   
3.
4.
CO2-enhanced oil recovery (EOR) is an upcoming technology in India. At present, no Indian field is under CO2-EOR and implementation of this technique to a mature oil field needs a rigorous study. In the present work, we made an attempt to investigate the CO2-EOR potential of a mature oil field, situated in Cambay Basin, India. The field was put on production in 1961, and it has produced approximately 65.36 MMt oil during massive water flooding, leading to residual oil reserves of 6.49 MMt. The operator of the field is interested in incremental oil recovery from this field by injecting CO2. This requires estimation of incremental oil recovery potential of the field by carrying out systematic study. We, therefore, developed a conceptual model inspired by Ankleshwar oil field of Cambay Basin using available information provided by the field operator and carried out systematic studies to establish an optimized strategy for CO2 injection. To achieve this goal, we investigated the effect of various operational parameters on oil recovery efficiency of our conceptual model and selected optimum parameters for reservoir simulations. Simulation results clearly indicate that the field can be a good candidate for CO2-EOR, and an additional oil recovery of 10.4% of hydrocarbon pore volume is feasible. Major outcome of the study is an optimized black-oil simulation model, which is in good agreement with the fine grid compositional model of high accuracy. The proposed black-oil model can easily be implemented and updated compared with compute intensive finer compositional simulation model.  相似文献   
5.
Simulation of fracturing processes in porous rocks can be divided into two main branches: (i) modeling the rock as a continuum enhanced with special features to account for fractures or (ii) modeling the rock by a discrete (or discontinuous) approach that describes the material directly as a collection of separate blocks or particles, e.g., as in the discrete element method (DEM). In the modified discrete element (MDEM) method, the effective forces between virtual particles are modified so that they reproduce the discretization of a first-order finite element method (FEM) for linear elasticity. This provides an expression of the virtual forces in terms of general Hook’s macro-parameters. Previously, MDEM has been formulated through an analogy with linear elements for FEM. We show the connection between MDEM and the virtual element method (VEM), which is a generalization of FEM to polyhedral grids. Unlike standard FEM, which computes strain-states in a reference space, MDEM and VEM compute stress-states directly in real space. This connection leads us to a new derivation of the MDEM method. Moreover, it enables a direct coupling between (M)DEM and domains modeled by a grid made of polyhedral cells. Thus, this approach makes it possible to combine fine-scale (M)DEM behavior near the fracturing region with linear elasticity on complex reservoir grids in the far-field region without regridding. To demonstrate the simulation of hydraulic fracturing, the coupled (M)DEM-VEM method is implemented using the Matlab Reservoir Simulation Toolbox (MRST) and linked to an industry-standard reservoir simulator. Similar approaches have been presented previously using standard FEM, but due to the similarities in the approaches of VEM and MDEM, our work provides a more uniform approach and extends these previous works to general polyhedral grids for the non-fracturing domain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号