首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31682篇
  免费   5895篇
  国内免费   8085篇
测绘学   2312篇
大气科学   6536篇
地球物理   7654篇
地质学   16423篇
海洋学   4348篇
天文学   1241篇
综合类   3174篇
自然地理   3974篇
  2024年   129篇
  2023年   555篇
  2022年   1585篇
  2021年   1765篇
  2020年   1526篇
  2019年   1673篇
  2018年   1959篇
  2017年   1689篇
  2016年   1917篇
  2015年   1659篇
  2014年   1969篇
  2013年   1973篇
  2012年   1842篇
  2011年   1945篇
  2010年   1871篇
  2009年   1811篇
  2008年   1585篇
  2007年   1476篇
  2006年   1249篇
  2005年   1170篇
  2004年   929篇
  2003年   916篇
  2002年   892篇
  2001年   954篇
  2000年   1012篇
  1999年   1394篇
  1998年   1080篇
  1997年   1072篇
  1996年   1029篇
  1995年   847篇
  1994年   764篇
  1993年   674篇
  1992年   566篇
  1991年   420篇
  1990年   340篇
  1989年   304篇
  1988年   254篇
  1987年   155篇
  1986年   157篇
  1985年   111篇
  1984年   90篇
  1983年   71篇
  1982年   58篇
  1981年   49篇
  1980年   36篇
  1979年   30篇
  1978年   22篇
  1976年   12篇
  1975年   10篇
  1958年   19篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
1.
Macrophyte community diversity and composition respond to ecosystem conservation and local environmental factors. In this study, we developed a multidimensional diversity framework for macrophyte communities, including the taxonomic and functional alpha and beta diversity. We used the framework to explore the relationships among water level regimes and these diversity parameters in a case study of China's Baiyangdian Lake. Analysis of indicators of hydrologic alteration divided the water level from 1959 to 2019 into four regimes (dry, <6.42 m; low, 6.42–7.23 m; medium, 7.23–8.19 m; high, >8.19 m). Alpha and beta diversity were significantly higher in the medium regime than in the low and high regimes. Redundancy analysis indicated that the maximum water depth significantly affected taxonomic alpha diversity, and total nitrogen (TN) and chemical oxygen demand (COD) concentration significantly affected functional alpha diversity, respectively. Mantel tests showed that TN, Secchi depth (SD), and water depth in the high water level regime significantly increased the total beta diversity and turnover components. TN was the main factor that increased total taxonomic beta diversity. Water level regime mainly influenced interspecific relationships by changing the TN and COD concentration. The water level should be maintained between the medium and high water level regimes to promote restoration of the macrophyte community and improve ecosystem stability. The biodiversity evaluation framework would provide a deeper insight into the hydrological process management for restoration of aquatic macrophyte communities in shallow lakes.  相似文献   
2.
青州市表层土壤元素地球化学组合特征研究   总被引:1,自引:0,他引:1       下载免费PDF全文
聚类分析和因子分析可以获得土壤元素地球化学组合特征及其差异性。对青州市表层土壤样品数据进行分析研究,通过聚类分析,绘制表层土壤元素聚类谱系图,将23种元素或指标分为5个元素组合簇群及2个单元素簇,研究各元素间的组合特征,探讨其相关性、聚集性及其指示意义;通过因子分析,找出有代表性的因子,用其代表变量,绘制典型因子得分等值线图,并从中分析不同元素组合的区域分布基于何种因素,用11个代表性因子的分布特征就基本可以代表青州市表层土壤23项原始变量的分布特征,并对F1,F2,F3主因子进行了地质解释。聚类分析与因子分析相结合,利于表层土壤中元素的共生组合特征及其差异性研究,利于对研究区表层土壤异常进行归纳总结。  相似文献   
3.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   
4.
Glaciers and snow cover are important constituents of the surface of the Tibetan Plateau. The responses of these phenomena to global environmental changes are sensitive, rapid and intensive due to the high altitudes and arid cold climate of the Tibetan Plateau. Based on multisource remote sensing data, including Landsat images, MOD10A2 snow product, ICESat, Cryosat-2 altimetry data and long-term ground climate observations, we analysed the dynamic changes of glaciers, snow melting and lake in the Paiku Co basin using extraction methods for glaciers and lake, the degree-day model and the ice and lake volume method. The interaction among the climate, ice-snow and the hydrological elements in Paiku Co is revealed. From 2000 to 2018, the basin tended to be drier, and rainfall decreased at a rate of −3.07 mm/a. The seasonal temperature difference in the basin increased, the maximum temperature increased at a rate of 0.02°C/a and the minimum temperature decreased at a rate of −0.06°C/a, which accelerated the melting from glaciers and snow at rates of 0.55 × 107 m3/a and 0.29 × 107 m3/a, respectively. The rate of contribution to the lake from rainfall, snow and glacier melted water was 55.6, 27.7 and 16.7%, respectively. In the past 18 years, the warmer and drier climate has caused the lake to shrink. The water level of the lake continued to decline at a rate of −0.02 m/a, and the lake water volume decreased by 4.85 × 108 m3 at a rate of −0.27 × 108 m3/a from 2000 to 2018. This evaluation is important for understanding how the snow and ice melting in the central Himalayas affect the regional water cycle.  相似文献   
5.
Huang  Chi-Yue  Shao  Lei  Wang  Ming-Huei  Xue  Wei-Guang  Qiao  Pei-Jun  Cui  Yu-Chi  Hou  Yuan-Li 《Marine Geophysical Researches》2019,40(2):111-127
Marine Geophysical Research - Early Cenozoic rift basins developed commonly on the Mesozoic basement along the SE Asia Continent. However, Eocene–Oligocene sequences were only exposed widely...  相似文献   
6.
Food safety is an important issue for the development of the national economy and society. Studying regional food supply and demand from the perspective of land resource carrying capacity can provide new references for regional resource sustainability. This study uses the data from farmer and herdsmen household questionnaires, statistical data, land use data, and other sources to construct a land resource carrying capacity (LCC) assessment framework, targeting the food supply and demand of residents in representative areas, specifically the typical grassland pastoral areas, sandy pastoral areas and agro-pastoral areas on the Xilin Gol grassland transects. The three food nutritional indicators of calories, protein and fat were selected for analyzing the balance of land resource carrying capacity. We found that: 1) Along the Xilin Gol grassland, the main local food supply showed a shift from meat and milk to grains, vegetables and fruits. 2) From north to south along the grassland transects, the calorie intake increased gradually, while the intake of protein and fat was highest in pastoral areas and lowest in agricultural areas. 3) The overall land resource carrying capacity of the Xilin Gol grassland transects was in a surplus state, but the land carrying capacity of typical grassland pastoral area was higher than the two other types of areas. This study provides an empirical reference for the sustainable development of regional food nutrition.  相似文献   
7.
地下水是张掖盆地的重要水资源,其硝酸盐污染尚未得到足够重视。对张掖盆地2004、2015年地下水硝酸盐浓度进行了系统分析,并采用美国环境保护署(USEPA)推荐的健康风险评价模型评估了地下水硝酸盐的健康风险。结果表明:自2004年以来张掖盆地地下水硝酸盐污染日趋严重。2015年硝酸盐浓度最高已达到283.32 mg·L-1,17.61%的采样点硝酸盐氮浓度超过GB5749-2006《生活饮用水卫生标准》中饮用地下水限量值(20 mg·L-1)。研究区人群经皮肤接触途径摄入硝酸盐的健康风险在可接受水平,而饮水摄入硝酸盐的健康风险较高,总风险中饮水途径引起健康风险的贡献率占99.40%,远大于皮肤接触途径。儿童经饮水摄入和皮肤接触两种途径的健康风险均显著高于成人,分别为成人的1.544倍和1.039倍。32.39%的采样点地下水硝酸盐对儿童的健康风险超出了可接受水平,14.79%的采样点地下水硝酸盐对成人的健康风险不可接受。甘州区城区、临泽县北部边缘及高台县城区周围硝酸盐浓度最高,这些区域内所有人群都面临硝酸盐引发的高健康风险,其余区域硝酸盐引发的健康风险相对较低。  相似文献   
8.
以祠庙祭祀为主体且祠庙保存良好的民间信仰是甘肃陇中地区民间文化的重要组成。甘肃陇中地区的民间信仰具有很强的趋同性,本文以陇中地区的榆中县为例,以各村的祠庙为民间文化载体,通过核密度分析、Logistic回归等方法探讨榆中县民间文化载体的空间分布及其影响因素对于探讨陇中地区人地关系,保护和弘扬民俗文化有着重要意义。研究结果表明:(1)根据已有研究将榆中县民间信仰归纳为山神信仰、水神信仰、天地信仰、女性信仰、英雄崇拜和祖先崇拜,祖先崇拜的祠庙数量占有重要地位;(2)榆中县祠庙主要分布在西北黄河南岸、中部陇海铁路沿线及南部风景名胜集聚区,村级层面空间差异不显著、乡镇空间差异相对较大。通过核密度分析,不同类别民间信仰空间分布热点各有不同;(3)榆中县民间信仰空间分布受到区位条件限制,民间信仰的祠庙多位于海拔高度较低、人口密度较大、交通可达性较好的地区,坡度和到水源的距离成为山神信仰和水神信仰祠庙空间分布显著的影响因子,榆中县祠庙呈现出山神信仰类祠庙“依山”,水神信仰类祠庙“傍水”的空间特点。  相似文献   
9.
Li  Wei  Li  Xiaoyan  Huang  Yongmei  Wang  Pei  Zhang  Cicheng 《地理学报(英文版)》2019,29(9):1507-1526

In many arid ecosystems, vegetation frequently occurs in high-cover patches interspersed in a matrix of low plant cover. However, theoretical explanations for shrub patch pattern dynamics along climate gradients remain unclear on a large scale. This context aimed to assess the variance of the Reaumuria soongorica patch structure along the precipitation gradient and the factors that affect patch structure formation in the middle and lower Heihe River Basin (HRB). Field investigations on vegetation patterns and heterogeneity in soil properties were conducted during 2014 and 2015. The results showed that patch height, size and plant-to-patch distance were smaller in high precipitation habitats than in low precipitation sites. Climate, soil and vegetation explained 82.5% of the variance in patch structure. Spatially, R. soongorica shifted from a clumped to a random pattern on the landscape towards the MAP gradient, and heterogeneity in the surface soil properties (the ratio of biological soil crust (BSC) to bare gravels (BG)) determined the R. soongorica population distribution pattern in the middle and lower HRB. A conceptual model, which integrated water availability and plant facilitation and competition effects, was revealed that R. soongorica changed from a flexible water use strategy in high precipitation regions to a consistent water use strategy in low precipitation areas. Our study provides a comprehensive quantification of the variance in shrub patch structure along a precipitation gradient and may improve our understanding of vegetation pattern dynamics in the Gobi Desert under future climate change.

  相似文献   
10.
The source regions of the Yangtze and Yellow Rivers are important in the field of eco-environmental change research in China because of its distinct alpine ecosystem and cryosphere environment. At present, there are three different concepts on the extent of source areas of the Yangtze and Yellow Rivers: hydrological, geographical, and eco-environmental. Over the past decades, annual average air temperature has warmed significantly; moreover, the temperature rise rate increases notably with increase of time of the data series. Annual precipitation has no obvious increase or decrease trend, and the climate has become warm and dry in the source regions. As a result, the cryosphere in the regions has shrunk significantly since 1960 s. A warm and dry climate and changing cryosphere together induced a substantial declination of alpine wetlands, marked decrease in river runoff, significant degradation of alpine grassland, and a reduction of engineering stability.The ecological environment, however, has a tendency for restoration in the regions because the climate has become gradually warm and wet since 2000. Thus, studies on eco-environmental change is transforming from a single element to multidisciplinary integration. Climate change-cryopshere change-physical and socioeconomic impacts/risk-adaptation constitute a chain of multidisciplinary integration research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号