首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   2篇
测绘学   1篇
地球物理   1篇
地质学   22篇
海洋学   1篇
天文学   1篇
自然地理   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
  1991年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有28条查询结果,搜索用时 15 毫秒
1.
The fractionation of sulfur isotopes by the thermophilic chemolithoautotrophic Thermodesulfatator indicus was explored during sulfate reduction under excess and reduced hydrogen supply, and the full temperature range of growth (40-80 °C). Fractionation of sulfur isotopes measured under reduced H2 conditions in a fed-batch culture revealed high fractionations (24-37‰) compared to fractionations produced under excess H2 supply (1-6‰). Higher fractionations correlated with lower sulfate reduction rates. Such high fractionations have never been reported for growth on H2. For temperature-dependant fractionation experiments cell-specific rates of sulfate reduction increased with increasing temperatures to 70 °C after which sulfate-reduction rates rapidly decreased. Fractionations were relatively high at 40 °C and decreased with increasing temperature from 40-60 °C. Above 60 °C, fractionation trends switched and increased again with increasing temperatures. These temperature-dependant fractionation trends have not previously been reported for growth on H2 and are not predicted by a generally accepted fractionation model for sulfate reduction, where fractionations are controlled as a function of temperature, by the balance of the exchange of sulfate across the cell membrane, and enzymatic reduction rates of sulfate. Our results are reproduced with a model where fractionation is controlled by differences in the temperature response of enzyme reaction rates and the exchange of sulfate in and out of the cell.  相似文献   
2.
In this paper we describe the transport of pollution in groundwater in the neighbourhood of a well in a uniform background flow. We compute the rate at which contaminated particles reach the well as a function of the place of the source of pollution. The motion of a particle in a dispersive flow is seen as a random walk process. The Fokker-Planck equation for the random motion of a particle is transformed using the complex potential for the advective flow field. The resulting equation is solved asymptotically after a stretching transformation. Finally, the analytical solution is compared with results from Monte Carlo simulations with the random walk model. The method can be extended to arbitrary flow fields. Then by a numerical coordinate transformation the analytical results can still be employed.  相似文献   
3.
In an attempt to discriminate between tectonically induced sea-level changes and glacio-eustacy, the Ekklissia and Arakthos sections (Epirus, NW Greece) are examined, applying (dinocyst) palynology, sedimentology and magnetostratigraphy. The sections, located in the Pindos Foreland Basin, both comprise the transition from pelagic limestones to hemipelagic silty clays and turbidite sandstones, reflecting the onset of flysch sedimentation as a result of the Pindos thrust activity. Despite an overall tectonic overprint, relative changes of sea level can be reconstructed, using (i) continental/marine palynomorph ratios, (ii) relative abundance of inshore and offshore dinoflagellate cysts, and (iii) taxa indicative of relatively cold and warm sea-surface temperature, that can be calibrated against the Global Polarity Time Scale (GPTS). Increased fluxes of marginal marine and continental palynomorphs coincide with colder periods on a 'third-order' scale, which thus appear to be related to glacio-eustatic trends in sea-level. The larger scale is attributed to the increasing effect of tectonics and acts on a 'second-order scale'.  相似文献   
4.
The Niers valley was part of the Rhine system that came into existence during the maximum Saalian glaciation and was abandoned at the end of the Weichselian. The aim of the study was to explain the Late Pleniglacial and Late Glacial fluvial dynamics and to explore the external forcing factors: climate change, tectonics and sea level. The sedimentary units have been investigated by large‐scale coring transects and detailed cross‐sections over abandoned channels. The temporal fluvial development has been reconstructed by means of geomorphological relationships, pollen analysis and 14C dating. The Niers‐Rhine experienced a channel pattern change from braided, via a transformational phase, to meandering in the early Late Glacial. This change in fluvial style is explained by climate amelioration at the Late Pleniglacial to Late Glacial transition (at ca. 12.5 k 14C yr BP) and climate‐related hydrological, lithological and vegetation changes. A delayed fluvial response of ca. 400 14C yr (transitional phase) was established. The channel transformations are not related to tectonic effects and sea‐level changes. Successive river systems have similar gradients of ca. 35–40 cm km?1. A meandering river system dominated the Allerød and Younger Dryas periods. The threshold towards braiding was not crossed during the Younger Dryas, but increased aeolian activity has been observed on the Younger Dryas point bars. The final abandonment of the Niers‐Rhine was dated shortly after the Younger Dryas to Holocene transition. Traces of Laacher See pumice have been found in the Niers valley, indicating that the Niers‐Rhine was still in use during the Younger Dryas. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
5.
In the transformation from tidal systems to freshwater coastal landscapes, plants act as eco-engineering species that reduce hydrodynamics and trap sediment, but nature and timing of the mechanisms of land creation along estuaries remains unclear. This article focuses on the Old Rhine estuary (The Netherlands) to show the importance of vegetation in coastal landscape evolution, predominantly regarding tidal basin filling and overbank morphology. This estuary hosted the main outflow channel of the river Rhine between ca 6500 to 2000 cal bp , and was constrained by peat during most of its existence. This study reconstructs its geological evolution, by correlating newly integrated geological data and new field records to varying conditions. Numerical modelling was performed to test the inferred mechanisms. It was found that floodbasin vegetation and resulting organic accumulation strongly accelerated back-barrier infill, by minimizing tidal influence. After tidal and wave transport had already sufficiently filled the back-barrier basin, reed rapidly expanded from its edges under brackish conditions, as shown by diatom analysis and datings. Reed growth provided a positive infilling feedback by reducing tidal flow and tidal prism, accelerating basin infilling. New radiocarbon dates show that large-scale crevassing along the Old Rhine River – driven by tidal backwater effect – only started as nutrient-rich river water transformed the floodbasin into an Alder carr in a next phase of estuary evolution. Such less dense vegetation promotes crevassing as sediments are more easily transported into the floodbasin. As river discharge increased and estuary mouth infilling progressed, crevasse activity diminished around 3800 to 3000 cal bp , likely due to a reduced tidal backwater effect. The insights from this data-rich Holocene study showcase the dominant role that vegetation may have in the long-term evolution of coastal wetlands. It provides clues for effective use of vegetation in vulnerable wetland landscapes to steer sedimentation patterns to strategically adapt to rising water levels.  相似文献   
6.
The Greenland ice core from NorthGRIP (NGRIP) contains a proxy climate record across the Pleistocene–Holocene boundary of unprecedented clarity and resolution. Analysis of an array of physical and chemical parameters within the ice enables the base of the Holocene, as reflected in the first signs of climatic warming at the end of the Younger Dryas/Greenland Stadial 1 cold phase, to be located with a high degree of precision. This climatic event is most clearly reflected in an abrupt shift in deuterium excess values, accompanied by more gradual changes in δ18O, dust concentration, a range of chemical species, and annual layer thickness. A timescale based on multi‐parameter annual layer counting provides an age of 11 700 calendar yr b2 k (before AD 2000) for the base of the Holocene, with a maximum counting error of 99 yr. A proposal that an archived core from this unique sequence should constitute the Global Stratotype Section and Point (GSSP) for the base of the Holocene Series/Epoch (Quaternary System/Period) has been ratified by the International Union of Geological Sciences. Five auxiliary stratotypes for the Pleistocene–Holocene boundary have also been recognised. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
7.
We analysed pollen from a sediment core from Fiddaun, a small Lateglacial lake basin in western Ireland. Results reflect the general Lateglacial vegetation development in Ireland, as reconstructed from other pollen records. The Fiddaun diagram shows a number of short‐lived regressive vegetation phases during the Interstadial. The close similarity between two pollen records from the same region (Fiddaun and Lurga) indicates that these fluctuations probably reflect regional rather than local changes. Comparison with a previously published climate reconstruction, based on a chironomid‐inferred mean July air temperature reconstruction, lithology, and oxygen and carbon isotopes of lake marl from the Fiddaun record, allowed us to establish the relationship between summer temperature and vegetation changes. Results reveal that two temporary regressive shifts in the pollen record correspond to cold oscillations, which have been correlated to Greenland Interstadial 1b and 1d. It seems that the first cold oscillation (GI‐1d) had the most distinct effect on vegetation in Ireland. In contrast, it appears that the transition from Juniperus shrubland and Empetrum heath to grassland, which is estimated at ~13.7 ka BP, was not caused by decreasing summer temperatures, as no substantial change is observed in the climate proxies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
9.
ABSTRACT

Recently developed urban air quality sensor networks are used to monitor air pollutant concentrations at a fine spatial and temporal resolution. The measurements are however limited to point support. To obtain areal coverage in space and time, interpolation is required. A spatio-temporal regression kriging approach was applied to predict nitrogen dioxide (NO2) concentrations at unobserved space-time locations in the city of Eindhoven, the Netherlands. Prediction maps were created at 25 m spatial resolution and hourly temporal resolution. In regression kriging, the trend is separately modelled from autocorrelation in the residuals. The trend part of the model, consisting of a set of spatial and temporal covariates, was able to explain 49.2% of the spatio-temporal variability in NO2 concentrations in Eindhoven in November 2016. Spatio-temporal autocorrelation in the residuals was modelled by fitting a sum-metric spatio-temporal variogram model, adding smoothness to the prediction maps. The accuracy of the predictions was assessed using leave-one-out cross-validation, resulting in a Root Mean Square Error of 9.91 μg m?3, a Mean Error of ?0.03 μg m?3 and a Mean Absolute Error of 7.29 μg m?3. The method allows for easy prediction and visualization of air pollutant concentrations and can be extended to a near real-time procedure.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号