首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
地质学   7篇
天文学   18篇
自然地理   2篇
  2023年   1篇
  2019年   2篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2001年   2篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有27条查询结果,搜索用时 218 毫秒
1.
We report here that some of the pelitic rocks from the Wanni and Highland Complexes of Sri Lanka reacted with CO2-rich fluids to produce a wide range of unusual secondary carbonate-silicate-oxide-sulphide assemblages. These enable the depth, temperature and fluid compositions of CO2 reactions to be calculated more rigorously than is generally possible for the patches of arrested charnockite that have been described from Sri Lanka. Magnesite-andalusite-quartz has partially replaced primary cordierite, and siderite-rutile replaced ilmenite. Paragenetic sequences involving primary pyrrhotite, ilmenite and magnetite and secondary pyrite-siderite-rutile-magnetite-(hematite) demonstrate the control which carbonate equilibria have upon evolving fluid compositions during cooling. Direct evidence for the role of graphite as a source of CO2 is found in the Highland Complex where primary graphite partially reacted with silicates to form secondary siderite assemblages. It is proposed that following peak metamorphism, continued uplift along a clockwise P-T-t path was accompanied by a series of devolatilization reactions involving breakdown of graphite and the continuous production of secondary CO2-rich fluids. The limited extent of disseminated secondary carbonate reflects the small amount of graphite inferred to have been present in the source rocks. These rocks demonstrate that CO2-rich fluids, as found in disseminated fluid inclusions, need not form during peak granulite metamorphism but may be an inevitable consequence of continued uplift along a clockwise P-T-t path. The arrested charnockite which overprinted some of the hornblende-bearing felsic-intermediate composition rocks in Sri Lanka most likely formed by the same process. Received: 4 May 1994 / Accepted: 25 October 1996  相似文献   
2.
Abstract— Spectra of asteroid 4 Vesta and 21 small (estimated diameters less than 10 km) asteroids with Vesta‐like spectral properties (Vestoids) were measured at visible and near‐infrared wavelengths (~0.44 to ~1.65 μm). All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled “non‐family” members that reside just outside the semi‐major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a‐e‐i) match of these “non‐family” objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut‐off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine‐rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best‐known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine‐grained eucritic material on their surfaces.  相似文献   
3.
E.A. Cloutis  P. Hudon  T. Hiroi  M.J. Gaffey 《Icarus》2012,217(1):389-407
Powdered samples of a suite of 14 CR and CR-like chondrites, ranging from petrologic grade 1 to 3, were spectrally characterized over the 0.3–2.5 μm interval as part of a larger study of carbonaceous chondrite reflectance spectra. Spectral analysis was complicated by absorption bands due to Fe oxyhydroxides near 0.9 μm, resulting from terrestrial weathering. This absorption feature masks expected absorption bands due to constituent silicates in this region. In spite of this interference, most of the CR spectra exhibit absorption bands attributable to silicates, in particular an absorption feature due to Fe2+-bearing phyllosilicates near 1.1 μm. Mafic silicate absorption bands are weak to nonexistent due to a number of factors, including low Fe content, low degree of silicate crystallinity in some cases, and presence of fine-grained, finely dispersed opaques. With increasing aqueous alteration, phyllosilicate: mafic silicate ratios increase, resulting in more resolvable phyllosilicate absorption bands in the 1.1 μm region. In the most phyllosilicate-rich CR chondrite, GRO 95577 (CR1), an additional possible phyllosilicate absorption band is seen at 2.38 μm. In contrast to CM spectra, CR spectra generally do not exhibit an absorption band in the 0.65–0.7 μm region, which is attributable to Fe3+–Fe2+ charge transfers, suggesting that CR phyllosilicates are not as Fe3+-rich as CM phyllosilicates. CR2 and CR3 spectra are uniformly red-sloped, likely due to the presence of abundant Fe–Ni metal. Absolute reflectance seems to decrease with increasing degree of aqueous alteration, perhaps due to the formation of fine-grained opaques from pre-existing metal. Overall, CR spectra are characterized by widely varying reflectance (4–21% maximum reflectance), weak silicate absorption bands in the 0.9–1.3 μm region, overall red slopes, and the lack of an Fe3+–Fe2+ charge transfer absorption band in the 0.65–0.7 μm region.  相似文献   
4.
5.
Identifying and mapping olivine on asteroid 4 Vesta are important components to understanding differentiation on that body, which is one of the objectives of the Dawn mission. Harzburgitic diogenites are the main olivine‐bearing lithology in the howardite‐eucrite‐diogenite (HED) meteorites, a group of samples thought to originate from Vesta. Here, we examine all the Antarctic harzburgites and estimate that, on scales resolvable by Dawn, olivine abundances in putative harzburgite exposures on the surface of Vesta are likely at best in the 10–30% range, but probably lower due to impact mixing. We examine the visible/near‐infrared spectra of two harzburgitic diogenites representative of the 10–30% olivine range and demonstrate that they are spectrally indistinguishable from orthopyroxenitic diogenites, the dominant diogenitic lithology in the HED group. This suggests that the visible/near‐infrared spectrometer onboard Dawn (VIR) will be unable to resolve harzburgites from orthopyroxenites on the surface of Vesta, which may explain the current lack of identification of harzburgitic diogenite on Vesta.  相似文献   
6.
Abstract Thermal metamorphism study of the C, G, B, and F asteroids has been revisited using their UV, visible, NIR, and 3 μm reflectance spectra. High-quality reflectance spectra of seven selected C, G, B, and F asteroids have been compared with spectra for 29 carbonaceous chondrites, including thermally-metamorphosed CI/CM meteorites. There are three sets of spectral counterparts, among which 511 Davida and B-7904 are the most similar to each other in terms of both spectral shape and brightness. By comparing the 0.7 μm and 3 μm absorption strengths of 21 C, G, B, and F asteroids and heated Murchison samples, these asteroids have been grouped into three heating-temperature ranges. These correspond to (1) <400 °C: phyllosilicate-rich; (2) 400–600 °C: phyllosilicates transformed to anhydrous silicates; and (3) >600 °C: fully anhydrous. A good correlation between the UV and 3 μm absorption strengths has been confirmed for the C, G, B, and F asteroids and the CI, CM, and CR meteorites. A plot of the UV absorption strength vs. the IRAS diameter for 142 C, G, B, and F asteroids shows that the maximum UV absorption strength decreases as the diameter increases for the asteroids >60 km, with a notable exception, Ceres. These relationships suggest that some of the larger asteroids may be the heated inner portions of once larger bodies and that common CI/CM meteorites may have come from the lost outer portions, which escaped extensive late-stage heating events.  相似文献   
7.
Crystal-field theory was applied to Fe2+ ions in three types of silicates in an attempt to assign all the major absorption bands with only one parameter to adjust. Coulomb potential energy field were calculated by Fourier method based on all the actual atomic coordinates refined by X-ray diffraction studies. Perturbed d-electron splitting energies of the central Fe2+ ion were calculated by introducing Configuration Interaction (CI) method for the lowest energy spectral states. All the major absorption bands observed in powdered bronzite, augite, and olivine, were assigned to the transitions between those calculated energy levels by optimizing only one parameter that expresses expansion or contraction of d-electron cloud. The result of the calculations gives almost the same assignments as the other previous works for bronzites, different assignments for augites, and a possibility of the existence of the fourth band hidden in the composite 1-μm band of olivines.  相似文献   
8.
9.
Comprehensive spectroscopic characterization of interior and exterior chips of the lherzolitic shergottite Y-984028 has been performed using results from six techniques. Data from UV–visible–near-IR reflectance spectra, thermal (mid-IR) emission spectra, attenuated total reflectance (ATR) spectra, transmission FTIR spectra, Raman microprobe spectra, and Mössbauer spectra of whole rock and mineral separates from this meteorite are integrated and compared. Five of these analytical techniques accurately determined the ~Fo65 composition of the olivine within ±10 mol%. Both transmission FTIR and ATR spectra show broad features near 3500 cm?1 indicating the presence of OH/H2O that does not arise from surface water adsorption. The brown color of the Y-984028 olivine is likely due to the presence of nanophase metallic iron particles (npFe0) dispersed throughout the olivine during a major shock event on Mars. Y-984028 olivine also contains a significant amount of Fe3+, but this cannot be distinguished from Fe3+ that is present in pyroxene and possibly clay minerals. This meteorite and the nakhlite MIL03346 are the two most oxidized of the SNC meteorites studied to date, with Fe3+ contents consistent with high-temperature equilibration near the QFM oxygen buffer.  相似文献   
10.
Abstract— We studied five new Antarctic achondrites, MacAlpine Hills (MAC) 88177, Yamato (Y)74357, Y75274, Y791491 and Elephant Moraine (EET)84302 by mineralogical techniques to gain a better understanding of the mineral assemblages of a group of meteorites with an affinity to Lodran (stony-iron meteorite) and their formation processes. This group is being called lodranites. These meteorites contain major coarse-grained orthopyroxene (Opx) and olivine as in Lodran and variable amounts of FeNi metal and troilite etc. MAC88177 has more augite and less FeNi than Lodran; Y74357 has more olivine and contains minor augite; Y791491 contains in addition plagioclase. EET84302 has an Acapulco-like chondritic mineral assembladge and is enriched in FeNi metal and plagioclase, but one part is enriched in Opx and chromite. The EET84302 and MAC88177 Opx crystals have dusty cores as in Acapulco. EET84302 and Y75274 are more Mg-rich than other members of the lodranite group, and Y74357 is intermediate. Since these meteorites all have coarse-grained textures, similar major mineral assemblages, variable amounts of augite, plagioclase, FeNi metal, chromite and olivine, we suggest that they are related and are linked to a parent body with modified chondritic compositions. The variability of the abundances of these minerals are in line with a proposed model of the surface mineral assemblages of the S asteroids. The mineral assemblages can best be explained by differing degrees of loss or movements of lower temperature partial melts and recrystallization, and reduction. A portion of EET84302 rich in metal and plagioclase may represent a type of component removed from the lodranite group meteorites. Y791058 and Caddo County, which were studied for comparison, are plagioclase-rich silicate inclusions in IAB iron meteorites and may have been derived by a similar process but in a different body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号