首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   3篇
天文学   6篇
  2012年   3篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
  2003年   1篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Abstract— In 2006, the Stardust spacecraft will return to Earth with cometary and perhaps interstellar dust particles embedded in silica aerogel collectors for analysis in terrestrial laboratories. These particles will be the first sample return from a solid planetary body since the Apollo missions. In preparation for the return, analogue particles were implanted into a keystone of silica aerogel that had been extracted from bulk silica aerogel using the optical technique described in Westphal et al. (2004). These particles were subsequently analyzed using analytical techniques associated with the use of a nuclear microprobe. The particles have been analyzed using: a) scanning transmission ion microscopy (STIM) that enables quantitative density imaging; b) proton elastic scattering analysis (PESA) and proton backscattering (PBS) for the detection of light elements including hydrogen; and c) proton‐induced X‐ray emission (PIXE) for elements with Z > 11. These analytical techniques have enabled us to quantify the composition of the encapsulated particles. A significant observation from the study is the variable column density of the silica aerogel. We also observed organic contamination within the silica aerogel. The implanted particles were then subjected to focused ion beam (FIB) milling using a 30 keV gallium ion beam to ablate silica aerogel in site‐specific areas to expose embedded particles. An ion polished flat surface of one of the particles was also prepared using the FIB. Here, we show that ion beam techniques have great potential in assisting with the analysis and exposure of Stardust particles.  相似文献   
2.
Comparison of ultrastructures in Pliocene periplatform carbonates from the Bahamas with Silurian limestones from Gotland (Sweden) reveals that despite the differences in primary sediment composition and age, they reflect a similar mechanism of lithification. In both sequences calcite microspar was formed as a primary cement at an early stage of marine burial diagenesis. Neither significant compression nor meteoric influence are necessary for the formation of calcite microspar. A model is proposed for the process of microsparitic cementation of fine-grained aragonite needle muds comprising four stages: (1) unconsolidated, aragonite-dominated carbonate mud; (2) precipitation of microspar that engulfs aragonite needles; (3) dissolution of aragonite, resulting in pitted surfaces of the microspar crystals; and (4) slight recrystallization. Our results contradict the widespread opinion that microspar necessarily is a product of secondary recrystallization of a previously lithified micrite.  相似文献   
3.
Abstract– The Al foils lining the aerogel tiles of the Stardust interstellar tray represent approximately 13% of the total collecting area, about 15,300 mm2. Although the flux is poorly constrained, fewer than 100 impacts are expected in all the Al foils on the collector, and most of these are likely to be less than 1 μm in diameter. Secondary electron (SE) images of the foils at a resolution of approximately 50 nm per pixel are being collected during the Stardust Interstellar Preliminary Examination, resulting in more than two million images that will eventually need to be searched for impact craters. The unknown and complicated nature of 3‐dimensional interstellar tracks in aerogel necessitated the use of a massively distributed human search to locate only a few interstellar tracks. The 2‐dimensional nature of the SE images makes the problem of searching for craters tractable for algorithmic approaches. Using templates of craters from cometary impacts into Stardust foils, we present a computer algorithm for the identification of impact craters in the Stardust interstellar foils using normalized cross‐correlation and template matching. We address the speed, sensitivity, and false‐positive rate of the algorithm. The search algorithm can be adapted for use in other applications. The program is freely available for download at http://jake.ssl.berkeley.edu:8000/groups/westphalgroup/wiki/14e52/ISPE_SEM_Crater_Search.html .  相似文献   
4.
Abstract– Transmission electron microscopy examination of 87 large fragments from 16 carrot‐shaped and bulbous Stardust (SD) tracks was performed to study the range and diversity of materials present in comet Wild 2. Olivines and low‐Ca pyroxenes represent the largest proportions of fragments observed; however, a wide range of minerals and rocks were found including probable ferromagnesian, Al‐rich and Si‐rich chondrule fragments, a refractory inclusion, possible matrix mineral/lithic clasts, and probable condensate minerals. These materials, combined with fine‐grained components in the tracks, are analogous to components in unequilibrated chondrite meteorites and cluster interplanetary dust particles (IDPs). Two unusual lithologies in the bulbous tracks are only observed in chondritic porous IDPs and may have direct links to IDPs. The absence of phyllosilicates indicates that comet Wild 2 may be a “dry” comet that did not accrete or form significant amounts of hydrated phases. Some large mineral fragments in the SD tracks are analogous to large mineral IDPs. The large variations of the coarse‐grained components within and between all 16 tracks show that comet Wild 2 is mineralogically diverse and unequilibrated on nearly all scales and must have accreted materials from diverse source regions that were widely dispersed throughout the solar nebula.  相似文献   
5.
Abstract– Keystones removed from the Stardust cometary collector show varying degrees of visible fluorescence when exposed to UV light, with the brightest fluorescence associated with the space‐exposed surface. We investigated the spatial characteristics of this phenomenon further by using fluorescence microscopy, confocal Raman microscopy, and synchrotron Fourier transform infrared (FTIR) spectromicroscopy. Twenty‐four keystones, extracted from the Stardust cometary collector, were analyzed. Fluorescence measurements show two distributions with different excitation characteristics, indicating the presence of at least two distinct fluorophores. The first distribution is confined to within about 10 μm of the space‐exposed surface, whereas the second distribution is much broader with a maximum that is typically about 30–50 μm below the surface. Confocal Raman measurements did not reveal any changes associated with the surface; however, only features associated with aliphatic hydrocarbons were strong enough to be observed. FTIR measurements, on the other hand, show two distinct distributions at the space‐exposed surface: (1) a narrow, surface‐confined distribution originating from ?O3SiH groups and (2) a broader, sub‐surface distribution originating from ?O2SiH2 groups. These functional groups were not observed in keystones extracted from the cometary flight spare or from the Stardust interstellar collector, indicating that they may result at least partially from cometary exposure. The presence of O3SiH and O2SiH2 groups at the comet‐exposed surface suggests that the enhanced surface fluorescence is caused by defects in the O‐Si‐O network and not by organic contamination.  相似文献   
6.
The Upper Jurassic (Tithonian) plattenkalk successions in the Solnhofen/Eichstätt area consist of alternations of thin‐bedded, laminated, fine‐grained, very pure limestones (so‐called ‘flinz beds’) and softer interlayers with slightly lower carbonate contents that are also laminated and show a foliaceous weathering appearance (‘fäule beds’). These successions are world famous for their exceptionally well‐preserved fossils. In contrast to the well‐studied wealth of fossils, little is known about the origin and diagenesis of the host rock. The reason for this discrepancy might lay in the monotonous appearance of these fine‐grained mudstones that require electron microscopical examination. Study of samples from the Solnhofen–Eichstädt area implies that flinz and fäule beds have undergone differential diagenesis. The ultrastructure of the flinz beds is characterized by interlocking microspar crystals, whereas the fäule beds show smaller and less interlocking crystals. The ratios of diagenetically inert trace elements lack clear differences between the two interlayered lithologies. While most authors agree that the flinz–fäule rhythm reflects rhythmically changing environmental conditions, primary rhythms can be taken as proven only where statistically significant differences in diagenetically resistant proxies are found. The absence of clear primary differences between flinz and fäule beds, however, leaves the question of primary differences unsolved. It is concluded that diagenesis has had a strong influence on the genesis of the lithological rhythm, and that any primary rhythm underlying the diagenetically mature rhythm is less clear than generally assumed.  相似文献   
7.
Abstract– Numerous potential sources of organic contaminants could have greatly complicated the interpretation of the organic portions of the samples returned from comet 81P/Wild 2 by the Stardust spacecraft. Measures were taken to control and assess potential organic (and other) contaminants during the design, construction, and flight of the spacecraft, and during and after recovery of the sample return capsule. Studies of controls and the returned samples suggest that many of these potential sources did not contribute any significant material to the collectors. In particular, contamination from soils at the recovery site and materials associated with the ablation of the heatshield do not appear to be significant problems. The largest source of concern is associated with the C present in the original aerogel. The relative abundance of this carbon can vary between aerogel tiles and even within individual tiles. This C was fortunately not distributed among a complex mixture of organics, but was instead largely present in a few simple forms (mostly as Si‐CH3 groups). In most cases, the signature of returned cometary organics can be readily distinguished from contaminants through their different compositions, nonterrestrial isotopic ratios, and/or association with other cometary materials. However, some conversion of the carbon indigenous to the flight aerogel appears to have happened during particle impact, and some open issues remain regarding how this C may be processed into new forms during the hypervelocity impact collection of the comet dust.  相似文献   
8.
Abstract— Infrared spectroscopy maps of some tracks made by cometary dust from 81P/Wild 2 impacting Stardust aerogel reveal an interesting distribution of organic material. Out of six examined tracks, three show presence of volatile organic components possibly injected into the aerogel during particle impacts. When particle tracks contained volatile organic material, they were found to be ‐CH2‐rich, while the aerogel is dominated by the ‐CH3‐rich contaminant. It is clear that the population of cometary particles impacting the Stardust aerogel collectors also includes grains that contained little or none of this organic component. This observation is consistent with the highly heterogeneous nature of collected grains, as seen by a multitude of other analytical techniques.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号