首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地质学   3篇
  2009年   1篇
  1992年   1篇
  1968年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Computer simulation of reef growth   总被引:3,自引:0,他引:3  
Light is one of the major controls on reef growth and carbonate production. The growth of present reef builders depends largely upon the amount of light available for photosynthesis. As light decreases with water depth, so does reef growth. The computer model presented extends this principle by combining two functions, one for photosynthesis and the other for the extinction of light in water. The model is used to simulate the growth of Alacran Reef, Mexico, two reefs of the Great Barrier Reef and the reefs of the windward platform of St Croix, US Virgin Islands. The model also gives an accurate simulation of the growth of fore-reef walls in Belize, in agreement with the accretion hypothesis developed for this feature.  相似文献   
2.
Results are presented of a detailed carbonate petrographic study of an Upper Miocene lacustrine mixed carbonate–siliciclastic succession in the Teruel Basin (Spain) with the aim of constraining lake‐level variability at different stratigraphic scales. Regular alternations of red to green mudstone and lacustrine limestone, termed the ‘basic cycle’, reflect lake‐level variations at the metre‐scale. In an earlier study, the basic cycle was shown to be controlled by the climatic precession cycle. Petrographic analysis made it possible to distinguish two main carbonate microfacies groups characteristic of very shallow transient and shallow permanent lake environments, respectively. In addition to the basic cyclicity, the microfacies analysis reveals lake‐level variations on a larger scale. As a consequence, the astronomical forcing hypothesis of the cyclicity in the Cascante section is explored further. A climate modelling study of orbital extremes indicates that high lake levels could relate to enhanced net winter precipitation and runoff during precession minima, consistent with Mediterranean geological data. Using this phase relationship, an astronomical tuning of the cycles is established starting from astronomical ages of magnetic reversal boundaries. Subsequently, successive basic cycles are correlated to precession minima. The tuning reveals an identical number of basic cycles in the Cascante section as precession‐related sapropel cycles in the deep marine succession at Monte dei Corvi (Italy), corroborating the precessional control of the basic cycles at Cascante. Lake‐level highstands in the large‐scale cycle identified by the microfacies analysis relate to maxima in both the ca 100 and 405 kyr eccentricity cycles, again consistent with Mediterranean geological data. Subtraction of the identified astronomically related (lake‐level) variations from the palaeoenvironmental record at Cascante indicates a shift to deeper and more permanent lacustrine environments in the upper half of the section. The cause of this shift remains unclear, but it may be linked to tectonics, non‐astronomical climate, long‐period astronomical cycles or autogenic processes.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号