首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   0篇
大气科学   1篇
地质学   33篇
  2017年   1篇
  2016年   5篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2006年   3篇
  2004年   2篇
  2002年   7篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有34条查询结果,搜索用时 437 毫秒
1.
2.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif shared a common geological history throughout the Neoproterozoic and Cambrian with the Avalonian–Cadomian terranes. The Neoproterozoic evolution of an active plate margin in the Teplá–Barrandian is similar to Avalonian rocks in Newfoundland, whereas the Cambrian transtension and related calc-alkaline plutons are reminiscent of the Cadomian Ossa–Morena Zone and the Armorican Massif in western Europe. The Neoproterozoic evolution of the Teplá–Barrandian unit fits well with that of the Lausitz area (Saxothuringian unit), but is significantly distinct from the history of the Moravo–Silesian unit.The oldest volcanic activity in the Bohemian Massif is dated at 609+17/−19 Ma (U–Pb upper intercept). Subduction-related volcanic rocks have been dated from 585±7 to 568±3 Ma (lower intercept, rhyolite boulders), which pre-dates the age of sedimentation of the Cadomian flysch ( t chovice Group). Accretion, uplift and erosion of the volcanic arc is documented by the Neoproterozoic Dob í conglomerate of the upper part of the flysch. The intrusion age of 541+7/−8 Ma from the Zgorzelec granodiorite is interpreted as a minimum age of the Neoproterozoic sequence. The Neoproterozoic crust was tilted and subsequently early Cambrian intrusions dated at 522±2 Ma (T ovice granite), 524±3 Ma (V epadly granodiorite), 523±3 Ma (Smr ovice tonalite), 523±1 Ma (Smr ovice gabbro) and 524±0.8 Ma (Orlovice gabbro) were emplaced into transtensive shear zones.  相似文献   
3.
Ductile extensional movements along the steeply inclined Hoher-Bogen shear zone caused the juxtaposition of Teplá-Barrandian amphibolites, granulites, and metaperidotites against Moldanubian mica schists and paragneisses. Garnet pyriclasites are well preserved within low-strain domains of this shear zone. Their degree of metamorphism is significantly higher than that of the surrounding rocks. Microstructural and mineral chemical data suggest in situ formation of the garnet pyriclasite by dehydration of pyroxene amphibolite at T>750–840°C and P<10–13 kbar including recrystallization-accommodated grain-size reduction of plagioclase and clinopyroxene, nucleation of garnet, and breakdown of amphibole into garnet+clinopyroxene+rutile. Subsequent decompression and retrograde extensional shearing led to the formation of mylonitic epidote amphibolite. The presence of lower crustal and mantle-derived slices within the Hoher-Bogen shear zone supports the view that (a) in Upper Devonian times the Teplá-Barrandian unit was thrust over Moldanubian rocks as a complete crustal unit, and (b) that during the subsequent Lower Carboniferous orogenic collapse, the garnet pyriclasite and metaperidotite were scraped off from the basal parts of the Teplá-Barrandian unit being dragged into the Hoher-Bogen shear zone due to dramatic and large-scale elevator-style movements. Received: 23 March 1999 / Accepted: 25 August 1999  相似文献   
4.
The Variscan Hauzenberg pluton consists of granite and granodiorite that intruded late- to postkinematically into HT-metamorphic rocks of the Moldanubian unit at the southwestern margin of the Bohemian Massif (Passauer Wald). U–Pb dating of zircon single-grains and monazite fractions, separated from medium- to coarse-grained biotite-muscovite granite (Hauzenberg granite II), yielded concordant ages of 320 ± 3 and 329 ± 7 Ma, interpreted as emplacement age. Zircons extracted from the younger Hauzenberg granodiorite yielded a 207Pb–206Pb mean age of 318.6 ± 4.1 Ma. The Hauzenberg granite I has not been dated. The pressure during solidification of the Hauzenberg granite II was estimated at 4.6 ± 0.6 kbar using phengite barometry on magmatic muscovite, corresponding to an emplacement depth of 16-18 km. The new data are compatible with pre-existing cooling ages of biotite and muscovite which indicate the Hauzenberg pluton to have cooled below T = 250–400 °C in Upper Carboniferous times. A compilation of age data from magmatic and metamorphic rocks of the western margin of the Bohemian Massif suggests a west- to northwestward shift of magmatism and HT/LP metamorphism with time. Both processes started at > 325 Ma within the South Bohemian Pluton and magmatism ceased at ca. 310 Ma in the Bavarian Oberpfalz. The slight different timing of HT metamorphism in northern Austria and the Bavarian Forest is interpreted as being the result of partial delamination of mantle lithosphere or removal of the thermal boundary layer.  相似文献   
5.
6.
The Cadomian basement of the Teplá–Barrandian unit is characterized by a classic Barrovian-type metamorphism, the degree of which increases considerably towards the west reaching amphibolite facies conditions in the Domaz?lice crystalline complex (DCC). The number and volume of plutons also increases towards the west. The emplacement ages of the Te?s?ovice granite and the Mrac?nice trondhjemite have been determined at 521.7±2?Ma and 523+4/–5?Ma, respectively, applying conventional U–Pb analyses of zircons. Pervasive high-temperature prolate fabrics and north-/northwest-dipping, dextral oblique-slip shear zones within the Mrac?nice trondhjemite suggest a synkinematic melt emplacement within a Lower Cambrian transtensional setting. Transtension is probably related to early-stage rifting that introduced the separation of the Teplá–Barrandian unit (as part of Armorica) from Gondwana. Structural and petrological data of the country rocks show that the Barrovian-type metamorphism and two deformation stages (D1 with unknown kinematics and D2 top-to-the-north shearing) are older than the melt emplacement, and thus can be attributed to the Cadomian orogeny. The intrusion depth of both plutons is nearly the same (ca. 7?km), although the degree of Barrovian-type metamorphism differs significantly within the country rocks. This suggests late Cadomian eastward tilting of the metamorphic isograd planes. The weak post-plutonic, lower-greenschist to subgreenschist facies folding and thrusting result from Variscan northwest/southeast compression.  相似文献   
7.
Investigations of brittle deformation structures, present within the crystalline rocks of the Bavarian Oberpfalz, reveal a complex late to post-Variscan crustal evolution. Upper Carboniferous (mainly Westphalian) granites were emplaced into semibrittle to brittle rocks of the ZEV (zone of Erbendorf-Vohenstrauß) and the EGZ (Erbendorf greenschist unit), respectively. From both the alignment of the granites and the direction of granite-related tension gashes a north-east-south-west extension must be assumed for the period of magmatic activities. Apart from the granite intrusions, rapid crustal uplift (about 1.5 km/my) led to an increase in the geothermal gradient from < 30 °C/km (late Variscan pre-granitic) to > 40 °C/km (late Variscan post-granitic). The increased geothermal gradient persisted during the succeeding reverse faulting which results from late Carboniferous (probably Stephanian) east-west and northeast-south-west compression. Although not evidenced directly in the area considered, strike-slip faults seem to have played an important part during the late Variscan crustal evolution, particularly in the Early Permian. The strike-slip events indicate further crustal shortening and indentation under north-south compression.A similar indentation was present in Cretaceous time. After a weak phase of Early Cretaceous reverse faulting, which results from north-south compression, strike-slip faults formed under north-west-south-east and north-south compression. All these faults, in particular the strike-slip faults, seem to be related to the Cretaceous and lowermost Tertiary convergence of the Alpine/Carpathian orogeny.A late stage of crustal extension, characterized by a radial stress tensor (2 = 3), is indicated through high angle normal faults which probably formed during the subsidence of the adjacent Neogene Eger Graben.  相似文献   
8.
The West Bohemian shear zone (WBSZ) forms a steep collapse structure along which east-side-down normal movements led to the juxtaposition of the relatively cold Cadomian basement of the Tepla-Barrandian unit against high grade Moldanubian rocks. Synkinematic plutons straddle the WBSZ. The Mut3nin pluton intruded into Moldanubian crust at a depth of 23dž km as derived by using Al-in-hornblende barometry. The Tepla-Barrandian Babylon pluton intruded at <12 km depth as indicated by phengite barometry and petrogenetic considerations. Both emplacement depths, together with mineral cooling ages, result in a minimum vertical displacement of 10 km between 340 and 320 Ma. This large throw could be explained by over-thickened crust that was weakened from below. The alkaline signature of the Mut3nin diorite indicates that mantle melting was important to thermally weaken the crust at 340 Ma. The cold Tepla-Barrandian upper crust sank into its weak, partly molten Moldanubian substratum, resulting in elevator-style movements, not only along the WBSZ, but also along the Hoher Bogen and Central Bohemian shear zone. All these ductile normal shear zones were active simultaneously during the Lower Carboniferous and dip steeply towards the Tepla-Barrandian unit that probably formed a highly elevated plateau at this time.  相似文献   
9.
ABSTRACT Volume diffusion and dislocation creep at T  ∼ 800 °C led to high finite strain in granulite and orthogneiss of the Ohře crystalline complex (North Bohemian shear zone). Intragranular creep by volume diffusion is indicated by (i) lobate phase boundaries between feldspar and quartz, and (ii) removal of perthite lamellae and precipitation of tiny, aluminium-rich needles at the margins of K-feldspar. The striking diffusional-creep structures imply high interfacial free energy that has been preserved from equilibration as a result of rapid cooling. U–Pb dating of monazite (342 ± 1 Ma) and 40Ar–39Ar dating of muscovite (341 ± 4 Ma) of Kadaň orthogneiss result in a cooling rate of 50 + 25/−17 °C Myr−1. This high value is attributed to collapse-related 'elevator-style' movements along the North Bohemian shear zone, resulting in the juxtaposition of upper crustal rocks of the Tepla–Barrandian unit against lower crustal rocks of the Erzgebirge crystalline complex.  相似文献   
10.
U–Pb zircon dating of three metagranitoids, situated within a tilted crustal section at the northwestern border of the Teplá Barrandian unit (Teplá crystalline complex, TCC), yields similar Cambrian ages. The U–Pb data of zircons of the Teplá orthogneiss define an upper intercept age of 513 +7/–6?Ma. The 207Pb/206Pb ages of 516±10 and 511±10?Ma of nearly concordant zircons of the Hanov orthogneiss and the Lestkov granite are interpreted to be close to the formation age of the granitoid protolith. Similar to the Cambrian granitoids of the southwestern part of the Teplá Barrandian unit (Doma?lice crystalline complex, DCC) the Middle Cambrian emplacement of the TCC granitoids postdates Cadomian deformation and metamorphism of the Upper Proterozoic country rocks, but predates Variscan tectonometamorphic imprints. Structural data as well as sedimentological criteria suggest a dextral transtensional setting during the Cambrian plutonism, related to the Early Paleozoic break-up of northern Gondwana. Due to strong Variscan crustal tilting, the degree of Variscan tectonometamorphic overprint is strikingly different in the dated granitoids. It is lowest in the weakly or undeformed Lestkov granite, located in the greenschist-facies domain. The Teplá orthogneiss in the north underwent pervasive top-to-NW mylonitic shearing under amphibolite-facies conditions. There is no indication for a resetting of the U–Pb isotopic system of the Teplá orthogneiss zircons that could be attributed to this imprint. Radiation damages accumulated until recent have probably caused lead loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号