首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1158篇
  免费   41篇
  国内免费   6篇
测绘学   17篇
大气科学   84篇
地球物理   290篇
地质学   349篇
海洋学   91篇
天文学   230篇
综合类   12篇
自然地理   132篇
  2021年   10篇
  2020年   14篇
  2019年   11篇
  2018年   19篇
  2017年   21篇
  2016年   16篇
  2015年   15篇
  2014年   28篇
  2013年   74篇
  2012年   33篇
  2011年   45篇
  2010年   47篇
  2009年   44篇
  2008年   49篇
  2007年   47篇
  2006年   47篇
  2005年   54篇
  2004年   43篇
  2003年   36篇
  2002年   43篇
  2001年   23篇
  2000年   37篇
  1999年   25篇
  1998年   32篇
  1997年   24篇
  1996年   16篇
  1995年   21篇
  1994年   25篇
  1993年   15篇
  1992年   17篇
  1991年   15篇
  1990年   19篇
  1989年   13篇
  1988年   8篇
  1987年   19篇
  1986年   13篇
  1985年   16篇
  1984年   18篇
  1983年   17篇
  1982年   18篇
  1981年   20篇
  1980年   13篇
  1979年   13篇
  1978年   12篇
  1977年   9篇
  1976年   6篇
  1975年   10篇
  1974年   6篇
  1973年   10篇
  1972年   6篇
排序方式: 共有1205条查询结果,搜索用时 31 毫秒
1.
Jurassic igneous bodies of the Sanandaj–Sirjan zone (SaSZ) in SW Iran are generally considered as a magmatic arc but critical evaluation of modern geochronology, geochemistry and radiogenic isotopes challenges this conclusion. There is no evidence for sustained igneous activity along the ~1,200 km long SaSZ, as expected for a convergent plate margin; instead activity was brief at most sites and propagated NW at ~20 mm/a. Jurassic igneous rocks define a bimodal suite of gabbro‐diorite and granite. Chemical and isotopic compositions of mafic rocks indicate subcontinental lithospheric mantle sources that mostly lacked subduction‐related modifications. The arc‐like features of S‐type granites reflect massive involvement of Cadomian crust and younger sediments to generate felsic melts in response to mafic intrusions. We conclude that Jurassic SaSZ igneous activity occurred in a continental rift, not an arc. SaSZ igneous rocks do not indicate that subduction along the SW margin of Eurasia began in Jurassic time.  相似文献   
2.
An updated Lagrangian finite-element formulation has been developed for time-dependent problems of soil consolidation involving finite deformations. Large plastic strains as well as rotations occur in such problems and nominal stress measures are introduced in the formulation to redefine stresses. This leads to corrective terms for equilibrium and yield violations in addition to geometric stiffening terms in the governing integral equations. The soil is considered to be either a linear elastic or an elastoplastic, critical-state material. Some simple numerical examples are studied to validate the formulation, followed by a detailed analysis of the problem of penetration of a pile into soil. The results of this problem are viewed with emphasis on the physical interpretation and practical significance.  相似文献   
3.
Several physical and observational effects may contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0–15%, depending on the character of the current-carrying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other - probably larger -effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.Operated for the National Science Foundation by the Association of Universities for Research in Astronomy.  相似文献   
4.
We present new 1.45-1.75 μm spectra of Europa's dark non-ice material with a spectral resolution (λ/δλ) of 1200, obtained by using adaptive optics on the Keck telescope to spatially separate the spectrum of the non-ice material from that of the surrounding ice-rich regions. Despite the great increase in spectral resolution over the previous best spectra of the non-ice material, taken with Galileo's near-infrared mapping spectrometer (NIMS) with λ/δλ=66, no new fine-scale spectral structure is revealed. The smoothness of the spectra is inconsistent with available laboratory spectra of crystalline hydrated salts at Europa temperatures, but is more consistent with various combinations of non-crystalline hydrated salts and/or hydrated sulfuric acid, as have been matched to the lower-resolution NIMS spectra.  相似文献   
5.
Spencer  John  Buie  Marc  Young  Leslie  Guo  Yanping  Stern  Alan 《Earth, Moon, and Planets》2003,92(1-4):483-491
Development of the New Horizons mission to Pluto and the Kuiper Belt is now fully funded by NASA (Stern and Spencer, this volume). If all goes well, New Horizons will be launched in January 2006, followed by a Jupiter gravity assist in 2007, with Pluto arrival expected in either 2015 or 2016, depending on the launch vehicle chosen. A backup launch date of early 2007, without a Jupiter flyby, would give a Pluto arrival in 2019 or 2020. In either case, a flyby of at least one Kuiper Belt object (KBO) is planned following the Pluto encounter, sometime before the spacecraft reaches a heliocentric distance of 50 AU, in 2021 or 2023 for the 2006 launch, and 2027 or 2029 for the 2007 launch. However, none of the almost 1000 currently-known KBOs will pass close enough to the spacecraft trajectory to be targeted by New Horizons, so the KBO flyby depends on finding a suitable target among the estimated 500,000 KBOs larger than 40 km in diameter. This paper discusses the issues involved in finding one or more KBO targets for New Horizons. The New Horizons team plans its own searches for mission KBOs but will welcome other U.S, or international team who wish to become involved in exchange for mission participation at the KBO.  相似文献   
6.
The ability of borehole temperature data to resolve past climatic events is investigated using Backus-Gilbert inversion methods. Two experimental approaches are considered: (1) the data consist of a single borehole temperature profile, and (2) the data consist of climatically-induced temperature transients measured within a borehole during a monitoring experiment. The sensitivity of the data's resolving power to the vertical distribution of the measurements, temperature measurement errors, the inclusion of a local meteorological record, and the duration of a monitoring experiment, are investigated. The results can be used to help interpret existing surface temperature histories derived from borehole temperature data and to optimize future experiments for the detection of climatic signals.  相似文献   
7.
8.
Tourmaline-rich rocks are common in the lowgrade, interior portions of the Barberton greenstone belt of South Africa, where shallow-marine sediments and underlying altered basaltic and komatiitic lavas contain up to 50% tourmaline. The presence of tourmaline-bearing rip-up clasts, intraformational tourmalinite pebbles, and tourmaline-coated grains indicates that boron mineralization was a low-temperature, surficial process. The association of these lithologies with stromatolites, evaporites, and shallow-water sedimentary structures and the virtual absence of tourmaline in correlative deep-water facies rocks in the greenstone bels strengthens this model.Five tourmaline-bearing lithologic groups (basalts, komatiites, evaporite-bearing sediments, stromatolitic sediments, and quartz veins) are distinguished based on field, petrographic, and geochemical criteria. Individual tourmaline crystals within these lithologies show internal chemical and textural variations that reflect continued growth through intervals of change in bulk-rock and fluid composition accompanying one or more metasomatic events. Large single-crystal variations exist in Fe/Mg, Al/Fe, and alkali-site vacancies. A wide range in tourmaline composition exists in rocks altered from similar protoliths, but tourmalines in sediments and lavas have similar compositional variations. Boron-isotope analysis of the tourmalines suggest that the boron enrichment in these rocks has a major marine evaporitic component. Sediments with gypsum pseudomorphs and lavas altered at low temperatures by shallow-level brines have the highest 11B values (+2.2 to-1.9); lower 11B values of late quartz veins (-3.7 to-5.7) reflect intermediate temperature, hydrothermal remobilization of evaporitic boron. The 11B values of tourmaline-rich stromatolitic sediments (-9.8 and-10.5) are consistent with two-stage boron enrichment, in which earlier marine evaporitic boron was hydrothermally remobilized and vented in shallow-marine or subaerial sites, mineralizing algal stromatolites. The stromatolite-forming algae preferentially may have lived near the sites of hydrothermal discharge in Archean times.  相似文献   
9.
The regionally extensive, coarse-grained Bakhtiyari Formation represents the youngest synorogenic fill in the Zagros foreland basin of Iran. The Bakhtiyari is present throughout the Zagros fold-thrust belt and consists of conglomerate with subordinate sandstone and marl. The formation is up to 3000 m thick and was deposited in foredeep and wedge-top depocenters flanked by fold-thrust structures. Although the Bakhtiyari concordantly overlies Miocene deposits in foreland regions, an angular unconformity above tilted Paleozoic to Miocene rocks is expressed in the hinterland (High Zagros).

The Bakhtiyari Formation has been widely considered to be a regional sheet of Pliocene–Pleistocene conglomerate deposited during and after major late Miocene–Pliocene shortening. It is further believed that rapid fold growth and Bakhtiyari deposition commenced simultaneously across the fold-thrust belt, with limited migration from hinterland (NE) to foreland (SW). Thus, the Bakhtiyari is generally interpreted as an unmistakable time indicator for shortening and surface uplift across the Zagros. However, new structural and stratigraphic data show that the most-proximal Bakhtiyari exposures, in the High Zagros south of Shahr-kord, were deposited during the early Miocene and probably Oligocene. In this locality, a coarse-grained Bakhtiyari succession several hundred meters thick contains gray marl, limestone, and sandstone with diagnostic marine pelecypod, gastropod, coral, and coralline algae fossils. Foraminiferal and palynological species indicate deposition during early Miocene time. However, the lower Miocene marine interval lies in angular unconformity above ~ 150 m of Bakhtiyari conglomerate that, in turn, unconformably caps an Oligocene marine sequence. These relationships attest to syndepositional deformation and suggest that the oldest Bakhtiyari conglomerate could be Oligocene in age.

The new age information constrains the timing of initial foreland-basin development and proximal Bakhtiyari deposition in the Zagros hinterland. These findings reveal that structural evolution of the High Zagros was underway by early Miocene and probably Oligocene time, earlier than commonly envisioned. The age of the Bakhtiyari Formation in the High Zagros contrasts significantly with the Pliocene–Quaternary Bakhtiyari deposits near the modern deformation front, suggesting a long-term (> 20 Myr) advance of deformation toward the foreland.  相似文献   

10.
There is an increasing evidence for the involvement of pre-Neoproterozoic zircons in the Arabian–Nubian Shield, a Neoproterozoic crustal tract that is generally regarded to be juvenile. The source and significance of these xenocrystic zircons are not clear. In an effort to better understand this problem, older and younger granitoids from the Egyptian basement complex were analyzed for chemical composition, SHRIMP U–Pb zircon ages, and Sm–Nd isotopic compositions. Geochemically, the older granitoids are metaluminous and exhibit characteristics of I-type granites and most likely formed in a convergent margin (arc) tectonic environment. On the other hand, the younger granites are peraluminous and exhibit the characteristics of A-type granites; these are post-collisional granites. The U–Pb SHRIMP dating of zircons revealed the ages of magmatic crystallization as well as the presence of slightly older, presumably inherited zircon grains. The age determined for the older granodiorite is 652.5 ± 2.6 Ma, whereas the younger granitoids are 595–605 Ma. Xenocrystic zircons are found in most of the younger granitoid samples; the xenocrystic grains are all Neoproterozoic, but fall into three age ranges that correspond to the ages of other Eastern Desert igneous rocks, viz. 710–690, 675–650 and 635–610 Ma. The analyzed granitoids have (+3.8 to +6.5) and crystallization ages, which confirm previous indications that the Arabian–Nubian Shield is juvenile Neoproterozoic crust. These results nevertheless indicate that older Neoproterozoic crust contributed to the formation of especially the younger granite magmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号