首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   1篇
地质学   2篇
天文学   2篇
  2011年   2篇
  2004年   1篇
  2002年   1篇
  1996年   1篇
排序方式: 共有5条查询结果,搜索用时 46 毫秒
1
1.
In this comment we argue that the premise on which the peat mound model developed by Armstrong (Earth Surface Process and Landforms, 1995, 20 , 473–477) is based, that hydraulic conductivity shows an exponential decline with depth in bog peats, is unsound. Empirical evidence in the literature for such an exponential decline is less sound than Armstrong suggests. In addition, Armstrong's suggestion that the hypothesis of Baird and Gaffney (Earth Surface Processes and Landforms, 1995, 20 , 561–566) supports an exponential decline is shown to be erroneous.  相似文献   
2.
Two picrite flows from the SW rift zone of Mauna Loa containxenoliths of dunite, harzburgite, lherzolite, plagioclase-bearinglherzolite and harzburgite, troctolite, gabbro, olivine gabbro,and gabbronorite. Textures and olivine compositions precludea mantle source for the xenoliths, and rare earth element concentrationsof xenoliths and clinopyroxene indicate that the xenolith sourceis not old oceanic crust, but rather a Hawaiian, tholeiitic-stagemagma. Pyroxene compositions, phase assemblages and texturalrelationships in xenoliths indicate at least two different crystallizationsequences. Calculations using the pMELTS algorithm show thatthe two sequences result from crystallization of primitive MaunaLoa magmas at 6 kbar and 2 kbar. Independent calculations ofolivine Ni–Fo compositional variability in the plagioclase-bearingxenoliths over these crystallization sequences are consistentwith observed olivine compositional variability. Two parentsof similar bulk composition, but which vary in Ni content, arenecessary to explain the olivine compositional variability inthe dunite and plagioclase-free peridotitic xenoliths. Xenolithsprobably crystallized in a small magma storage area beneaththe rift zone, rather than the large sub-caldera magma reservoir.Primitive, picritic magmas are introduced to isolated rift zonestorage areas during periods of high magma flux. Subsequenteruptions reoccupy these areas, and entrain and transport xenolithsto the surface. KEY WORDS: xenolith; Hawaii; volcano plumbing; mineral composition; picrite  相似文献   
3.
Abstract– To better determine the effects of impact‐related processes on radiometric chronometers in meteorites, we undertook an isotopic study of experimentally shocked and heated samples of lunar basalt 10017. Shock experiments at 55 GPa were completed on one subsample, and a second subsample was heated in an evacuated quartz tube at 1000 °C for 170 h. A third subsample was maintained as a control. Samarium‐neodymium, Rb‐Sr, 238U‐206Pb, and 206Pb‐207Pb isotopic analyses were completed on mineral fractions (leached and unleached), leached whole rocks, and complementary acid leachates. Disturbance in the shocked and heated samples was evaluated through comparison of their isochron diagrams with those of the control sample. The Sm‐Nd isotope system was the least disturbed, the Rb‐Sr isotope system was more disturbed, and the 238U‐206Pb and 206Pb‐207Pb isotope systems were the most disturbed by shock and annealing. Samples that experienced extended heating demonstrated greater isotopic disturbances than shocked samples. In some cases, the true crystallization age was preserved, and in others, age information was degraded or destroyed. In no case did the experiments generate isochrons that maintained linearity while being rotated or completely reset. Although our results show that neither experimental shock nor thermal metamorphism alone can account for the discordant ages represented by different isotope systems in some Martian meteorites, we postulate that shock metamorphism may render a meteorite more susceptible than its unshocked counterpart to subsequent disturbance during extended impact‐related heating or aqueous alteration. The combination of these processes may result in the disparate chronometric information preserved in some meteorites.  相似文献   
4.
Abstract– Evaporation rates of K2O, Na2O, and FeO from chondrule‐like liquids and the associated potassium isotopic fractionation of the evaporation residues were measured to help understand the processes and conditions that affected the chemical and isotopic compositions of olivine‐rich type IA and type IIA chondrules from Semarkona. Both types of chondrules show evidence of having been significantly or totally molten. However, these chondrules do not have large or systematic potassium isotopic fractionation of the sort found in the laboratory evaporation experiments. The experimental results reported here provide new data regarding the evaporation kinetics of sodium and potassium from a chondrule‐like melt and the potassium isotopic fractionation of evaporation residues run under various conditions ranging from high vacuum to pressures of one bar of H2+CO2, or H2, or helium. The lack of systematic isotopic fractionation of potassium in the type IIA and type IA chondrules compared with what is found in the vacuum and one‐bar evaporation residues is interpreted as indicating that they evolved in a partially closed system where the residence time of the surrounding gas was sufficiently long for it to have become saturated in the evaporating species and for isotopic equilibration between the gas and the melt. A diffusion couple experiment juxtaposing chondrule‐like melts with different potassium concentrations showed that the diffusivity of potassium is sufficiently fast at liquidus temperatures (DK > 2 × 10?4cm2 s?1 at 1650 °C) that diffusion‐limited evaporation cannot explain why, despite their having been molten, the type IIA and type IA chondrules show no systematic potassium isotopic fractionation.  相似文献   
5.
Stratigraphically well-constrained sequences of late shield-buildingstage lavas from West Maui volcano, Hawaii, show age-dependentcompositional variability distinct from that seen in shield-stagelavas from any other Hawaiian volcano. These distinctions aredefined by 206Pb/204Pb–208Pb/204Pb variation as well as87Sr/86Sr correlation with 206Pb/204Pb and trace element compositions.The West Maui lavas from stratigraphically higher in the sequencehave major and trace element and Sr–Pb–Hf–Ndisotopic compositions similar to Kea-type lavas sampled at theyounger Mauna Kea and Kilauea volcanoes, indicating that theKea compositional end-member of Hawaiian lavas has remainedhomogeneous over  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号