首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   4篇
地质学   2篇
  2008年   1篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Paleoseismology, the study of past earthquakes based on their geological record in the stratigraphy and landscape, is a successful newly developing field of research. The application of fault trench studies in volcanic environments is one of the youngest branches of paleoseismology. In this paper, we present the results of the first exploratory trenches excavated at Mt. Etna in Sicily, the largest European volcano. Modern surface faulting at Etna is a very well known feature, which poses significant hazard to the local community, both in terms of ground displacement of essential lifelines and ground shacking from frequent damaging earthquakes. However, while the geomorphology and the seismicity of the active fault in the Etna region consistently show very high rates of tectonic activity, the Holocene cumulative throw and slip-rates, along with the nature (coseismic vs. creeping fault slip), dimension and timing of the displacement events, are still poorly constrained. For this purpose, we selected as a sample area the Moscarello fault, one of the most outstanding segment of the Timpe system of active normal faults in the volcano’s lower eastern flank. Displaced landforms and volcanic units at the Fondo Macchia basin, in the central sector of this fault, indicate some hundreds of meters of vertical offset in the last ca. 80 kyr, with a long-term slip-rate substantially higher than 1.5–2.0 mm/yr. According to the historical sources and instrumental observations, the Moscarello fault ruptured four times in the last 150 years during shallow (H < 5 km) and moderate magnitude (M < 4.8) earthquakes. These events were associated with severe damage in a narrow epicentral area (macroseismic intensities up to the IX–X grade of the MSK scale) and extensive surface faulting (end-to-end rupture length up to 6 km, vertical offsets up to 90 cm). This clearly indicates very high modern rates of deformation along this fault. We conducted trench investigations at the Fondo Macchia site, in a point where eyewitnesses observed ca. 20 cm of coseismic vertical displacement after the April 21, 1971, Ms=3.7, earthquake. The excavated sections provided direct stratigraphic evidence for a vertical slip-rate of 1.4–2.7 mm/yr in the last ca. 6 kyr. This should be regarded as a minimum slip-rate for the central section of the fault. We explored a single scarp at a single site, while we know from recent historical observations that several parallel scarps may rupture coseismically at Fondo Macchia. Thus, the relevant deformation rate documented for the modern period might be likely extended back in the past to a time-span of some thousands of years at least. As expected, for such a volcanic environment, the activity rates of the Moscarello fault are also significantly higher than for the Apennines normal faults, typically showing slip-rates lower than 1 mm/yr. The agriculturally reworked trench hangingwall stratigraphy did not allow to recognize individual displacement events. Nevertheless, the sedimentary structures observed in the trench footwall strongly suggest that, as for the last 150–200 years of detailed historical record, fault behavior at Fondo Macchia is governed by coseismic surface displacement rather than fault creep. This research confirms that paleoseismology techniques can be effectively applied also in active volcanic environments, typically characterized by rheology and, consequently, seismicity and fault dynamics very different from those of other tectonic environments in which paleoseismology has been firstly developed and is today extensively applied.  相似文献   
2.
A rock avalanche deposit was investigated in order to understand the chronological evolution of geological hazards and to evaluate the interaction of the triggering geodynamic processes in the valley Val Viola, Italian Alps. The deposit is situated west of the Alpe Dosdé, in a permafrost area with deep-seated gravitational deformations (DSGD) along a tectonic line. Based on its geomorphologic context, the rock avalanche was first interpreted as a result of slope stress release without exact timing. This hypothesis was tested by measuring the 10Be exposure date of quartz from one boulder from the rock avalanche. The age of 7430±460 years places the event in the early Holocene. The timing of the last deglaciation was constrained using the inner late glacial moraine of a moraine doublet in the valley Alpe Dosdé situated at an altitude between 2140 and 2120 m a.s.l. west of the rock avalanche. The 10Be concentrations of quartz yield minimum exposure ages of 11,480±670 and 10,850±820 years. Different proposals for potential triggering factors of the rock avalanche include (a) melting of the local valley glacier and slope stress release in the Val Viola, likely to play a minor role as trigger, because of the time delay between the deglaciation and the rock avalanche event. More likely are (b) enhanced crustal seismicity induced by post-glacial regional isostatic glacial rebound coupled with tectonic stress or/and (c) climate conditions with higher temperatures around 7430±460 years, resulting in an upwards movement of the permafrost limit and destabilization of the rock walls.  相似文献   
3.
When dealing with hazard, the concept of fault capability (the probability of significant surface displacement in the near future) is more useful than the generic and often misleading concept of fault activity. The example of the Pernicana fault, located in the north-eastern flank of the Mt. Etna volcano is used here to illustrate the damage which can be expected in an urbanised area from a capable fault, in this case characterized by 'aseismic creep along part of its length. Along this fault, buildings, roads and other essential lifelines are being affected by slow, left-lateral displacement. The Pernicana fault is only one of a set of structures in the area whose movement, either connected to seismicity or not, is producing severe damage. First identified at the end of the last century, this source of hazard is, nevertheless, still poorly considered by planners and technicians. In Italy fault creep is quite rare outside the Etna region, but fault capability associated with strong earthquakes is relatively frequent, based on historical and palaeoseismological data, and is a feature that should be taken into account for hazard reduction programs.  相似文献   
4.
The Pollino Range is the southernmost segment of the Southern Apennines at the boundary with the Calabrian Arc. While several strong earthquakes (magnitude 6.5–7.0) have occurred in nearby regions, the Pollino area has no known historical record of seismic events of magnitude > 5. We carried out an aerial photograph interpretation and a field survey of the Pollino fault (the major Quaternary normal fault of the area) in order to characterize geologically the seismic potential of this structure. We dug two sets of trenches across fault scarps within the apecies of latest Pleistocene to Holocene alluvial fans at the Masseria Quercia Marina (MQM) and Grotta Carbone (GC) sites, in the central segment of the southern Pollino Range front. At both sites we identified two surface faulting events affecting the alluvial fan deposits and two overlying colluvial units of historical age. The penultimate event produced a vertical offset of 80–90 cm at GC and 50–60 cm at MQM; while the last event produced a vertical offset of 40–50 cm at GC and few centimeters of offset at MQM. Detailed geomorphological field observations suggest that the two historical earthquakes reactivated the entire length of the Masseria Marzano-Civita segment of the Pollino fault (rupture length about 18 km). For events in this range of rupture length and vertical displacement, comparison with surface faulting earthquakes in the Apennines (and abroad) indicates a magnitude of 6.5–7.0. Therefore, the maximum potential earthquake and the seismic hazard of the Pollino area are significantly larger than that suggested by the available historical seismic catalogue.  相似文献   
5.
6.
Moderate to strong crustal earthquakes are generally accompanied by a distinctivepattern of coseismic geological phenomena, ranging from surface faulting to groundcracks, landslides, liquefaction/compaction, which leave a permanent mark in thelandscape. Therefore, the repetition of surface faulting earthquakes over a geologictime interval determines a characteristic morphology closely related to seismic potential. To support this statement, the areal distribution and dimensions of effects of recent historical earthquakes in the Southern Apennines are being investigated in detail. This paper presents results concerning the 26 July 1805 earthquake in the Molise region, (I = X MCS, M = 6.8), and the 23 November 1980 earthquake in the Campania and Basilicata regions (I = X MSK, Ms = 6.9). Landslide data are also compared with two other historical earthquakes in the same region with similar macroseismic intensity. The number of significant effects (either ground deformation or hydrological anomalies) versus their minimum distance from the causative fault have been statistically analyzed, finding characteristic relationships. In particular, the decay of the number of landslides with distance from fault follows an exponential law, whereas it shows almost a rectilinear trend for liquefaction and hydrological anomalies. Most effects fall within the macroseismic area, landslides within intensity V to VI, liquefaction effects within VI and hydrologicalanomalies within IV MCS/MSK, hence at much larger distances. A possible correlation between maximum distance of effects and length of the reactivated fault zone is also noted. Maximum distances fit the envelope curves for Intensity and Magnitude based on worldwide data. These results suggest that a careful examination of coseismic geological effects can be important for a proper estimation of earthquake parameters and vulnerability of the natural environment for seismic hazard evaluation purposes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号