首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
地球物理   2篇
地质学   8篇
  2010年   1篇
  2006年   1篇
  2005年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有10条查询结果,搜索用时 78 毫秒
1
1.
The Midsommersø dolerites and the flood basalts of the Zig-Zag Dal Basalt Formation, eastern North Greenland, represent a major Mesoproterozoic (∼1,380 Ma) igneous event. The intrusive rocks form large sheets within a succession of feldspathic sandstones which underlie the basalts. The geochemistry of the basalts has recently been re-investigated and reported elsewhere in this Journal; here we present new trace element and Nd-, Sr- and Pb-isotopic data for the intrusive rocks. Unlike the basalts, the intrusions yield evidence of considerable interaction and contamination with upper crustal rocks, especially the sandstones. High-silica rocks (80–90 wt% SiO2) occur in sheets, up to 60 m thick. They were formed by mobilisation of sandstones, and indicate a very high rate of emplacement of hot basic magma into the sandstones at depth. These mobilised sandstones (‘rheopsammites’) are among the most SiO2-rich intrusive rocks on earth. Sheets of remobilised granitoid rocks from the crystalline basement (∼70% SiO2) are also present. Hydrothermal activity, associated with the igneous event, significantly changed the compositions of the silicic rocks as well as that of many dolerites. Sheets of hydrothermally altered (‘red’) dolerites and silicic rocks invariably have borders of dark, fresh dolerite; this is interpreted to be the result of intrusion from zoned magma chambers. Nd isotope data confirm the crustal origin of the silicic rocks as well as the contamination of some dolerites by components derived from crustal sources, while Sr- and Pb-isotopic systems are strongly affected by the hydrothermal alteration, and give little information on the petrogenesis of the rocks. Recent loss of Sr from hydrothermally altered rocks further affected the Sr isotope systems, and earlier age determinations by the Rb–Sr whole-rock isochron method (1,230 Ma) have proved to be in error. The dolerites and the basalts are geochemically very similar, but most dolerites have moderately negative Eu anomalies that are not observed in the basalts. Eu anomalies in the dolerites could be related to contamination by sandstone at depth, but it is not clear why the basalts escaped a similar contamination.  相似文献   
2.
Samples of three dolerite dykes from South-West Greenland give a pooled weighted mean Rb-Sr whole-rock isochron age of 2,130±65 Ma. Initial 87Sr/86Sr ratios are 0.70155±0.00018 for one of the dykes (Naujat) and 0.70277±0.00012 for the other two (Torssut and Akinaq). A fourth dyke (Qaqarssuaq) did not yield an isochron. Torssut samples have significantly lower initial 207Pb/204Pb ratios than samples from the Naujat dyke, indicating that the Torssut dyke has been affected by crustal contamination. Samples of the dykes vary widely in chemical composition because of an uneven distribution of different primocryst phases throughout the dykes, and because of variable degrees of fractionation of the magma. For two of the dykes some constraints on the composition of the parent magma have been inferred from trace element data. Higher concentrations of K, Rb, Ba, Sr, Ce and perhaps Nb (at comparable levels of magmatic fractionation) in the dykes with higher Sri are probably related to crustal contamination of their parent magmas. Two of the dykes probably intruded from zoned magma chambers. The marginal zones of these dykes crystallised from a strongly fractionated magma, whereas the centres of the dykes consist of more primitive material with large proportions of olivine and plagioclase primocrysts. The central part of Torssut is less strongly contaminated with crustal Pb than the border zones. A more detailed analysis of the Pb-isotopic composition in the Torssut dyke shows that contaminant lead must have been derived from rocks in the deeper crust considerably older than the late Archaean gneisses which occur at the surface.  相似文献   
3.
New chemical and isotopic data permit the recognition of a cryptic suture zone between two Archaean continental masses within the Nagssugtoqidian mobile belt of West Greenland. This discovery has important implications for Precambrian crustal evolution: suture zones may not always be identifiable from geological field observations, with the consequence that mobile belts in which undetected sutures exist may be mis-identified as ensialic, and thought to require special non-plate tectonic models to account for their development.The Nagssugtoqidian belt consists mainly of Archaean gneisses reworked during the Proterozoic, with metamorphic grade and degree of isotopic disturbance increasing towards the centre of the belt. At the centre of the belt the Nagssugtoqidian includes metasediments and calc-alkaline volcanic and plutonic rocks of Proterozoic age, almost always strongly deformed and metamorphosed. From isotopic evidence (Sri ca. 0.703; model μ1 values ca. 8.0; initial εNd ca. 0) it is clear that the Proterozoic igneous rocks do not include any significant contributions derived from the Archaean crust, and the chemistry of the rocks, together with the isotope data, suggests that they were formed at a destructive plate margin. The Proterozoic rocks are found in a narrow zone (up to 30 km wide) between the Archaean gneisses to the north and south of Nordre Strømfjord, and are interpreted as reflecting the existence of a suture between two Archaean continental blocks. Zircon UPb data and other isotope evidence show that subduction started before ca. 1920 Ma ago, and lasted until ca. 1850 Ma when collision occurred, with consequent crustal thickening, high-grade metamorphism and local anatexis. Given the time-span for the operation of subduction, the existence of a wide Nagssugtoqidian ocean can be inferred, even for slow rates of plate motion.The Proterozoic and Archaean gneisses in the Nagssugtoqidian belt are very similar lithologically and chemically, and it has only been possible to distinguish between them using isotopic criteria. Suture zones of this kind are very difficult to detect, and may be present elsewhere within the reworked Archaean terrains of northern Greenland and Canada.  相似文献   
4.
The lavas of the Zig-Zag Dal Formation of eastern North Greenland constitute a Mesoproterozoic tholeiitic flood basalt succession up to 1,350 m thick, extending >10,000 km2, and underlain by a sill complex. U–Pb dating on baddeleyite from one of the sills thought to be contemporaneous with the lava extrusion, gives an age of 1,382±2 Ma. The lavas, subdivided from oldest to youngest into Basal, Aphyric and Porphyritic units, are dominantly basaltic (>6 wt.% MgO), with more evolved lavas occurring within the Aphyric unit. The most magnesian lavas occur in the Basal unit and the basaltic lavas exhibit a generalised upward decrease in Mg number (MgO/(MgO + Fe2O3T)) through the succession. All of the lavas are regarded as products of variable degrees of olivine, augite and plagioclase fractionation and to be residual after generation of cumulates in the deep crust. The basaltic lavas display an up-section fall in the ratio of light to heavy rare-earth elements (LREE/HREE) but an up-section rise in Zr/Nb, Sc, Y and HREE. The older lavas (Basal and Aphyric units) are characterised by low Nd and Hf in contrast to higher values in the younger (Porphyritic unit) lavas. The Porphyritic Unit basalts are characterised by a notable enrichment in Fe and Ti. The Zig-Zag Dal succession is inferred to reflect an increase in melt fraction in the sub-lithospheric mantle, with melting commencing in garnet–lherzolite facies peridotites and subsequently involving spinel-facies mantle at increasingly shallow depths. Melting is deduced to have occurred beneath an attenuating continental lithosphere in conjunction with ascent of a mantle plume. Lithospheric contamination of primitive melts is inferred to have diminished with time with the Porphyritic unit basalts being products of essentially uncontaminated plume-source magmas. The high iron signature may reflect a relatively iron-rich plume source.  相似文献   
5.
Major and trace element chemistry, and Sr and Pb-isotope data are presented for a 400 km long and ca. 100 m wide basic dyke in the Rinkian mobile belt of West Greenland. The dyke is relatively alkaline in composition (Na2O+K2O:4.0–5.5%) but silica saturated (SiO2:47–49%). Its age is determined as 1,645±35 Ma (Rb-Sr whole-rock isochron, initial 87Sr/86Sr ratio 0.7028±0.0001) and the Pb-isotope data indicate a source with model 1= 8.00±0.02. Although the dyke cuts very diverse Archaean and Proterozoic country rocks, it displays a high degree of chemical and isotopic homogeneity along its entire outcrop and has probably not suffered any significant crustal contamination. The dyke shows a distinct chemical zonation, and variations in composition across the dyke at individual localities are often greater than variations between chill samples along the dyke. Chemical homogeneity of the dyke is consistent with two models: (1) rapid lateral emplacement from a localised intrusive centre, or (2) derivation of the magma from a deep, homogeneous mantle source of great extent. Both models pose severe problems, and the evidence does not permit a reliable choice between them.  相似文献   
6.
Amphibolite facies metamorphism of gabbroic dykes, together with their quartzo-feldspathic, granulite facies country rock (Archean basement, west Greenland), transformed the gabbroic rocks into amphibolites with remarkably high K/Rb values (up to 2300, average 727), reflecting correspondingly high K/Rb values in the country rock. A similar dyke transformation in an amphibolite facies complex (Precambrian basement, southwest Sweden) produced amphibolites with more common K/Rb values (average 375) similar to those found in the country rock. As the protolith chemistry and the P-T conditions of origin for the two amphibolite occurrences are very similar, it is concluded that the difference in K/Rb distribution is caused by the difference in country rocks. The K and Rb values in the two amphibolite occurrences lie between protolith and country-rock values, suggesting an exchange of K and Rb between basic rock and quartzo-feldspathic country rock, probably through the hydrothermal fluids which assisted in the amphibolite formation.  相似文献   
7.
A method is described to calculate the mineralogical composition of (hornblende-) biotite gneisses and amphibolites on the basis of (1) the chemical analysis of the rock, and (2) some information gained from the thin section, especially the An content of the plagioclase. In the calculations, hornblende and biotite of average chemical composition are used as norm minerals, and for rocks with such average hornblende and/or biotite the calculation gives a close approximation of the mode of the rock. For rocks in which the chemical composition of the hornblende and biotite deviates from the averages, errors result. These ‘random’ errors increase with the amounts of biotite and hornblende present. For rocks with up to approximately 15% biotite and/or hornblende the reliability of the results is as good as, or better than, normally obtained by point counting.  相似文献   
8.
Rb-Sr whole-rock isochron ages of gneisses from the Fiskenaesset area are considerably lower (2600–2800 m.y.) than U-Pb zircon ages for the same rocks (2880–2950 m.y.). There is a significant correlation between the isochron ages and the range in Rb/Sr ratios of the samples involved. Higher ages (and lower initial87Sr/86Sr ratios) are obtained for sample collections with a wide range in Rb/Sr ratios. Lower ages (and higher initial ratios) are obtained for sample collections with a narrow range in Rb/Sr ratios. This relationship is explained by a model of local metamorphic Sr isotope homogenisation in restricted rock volumes. This model implies that the individual isochron ages do not date specific geological events. There is a significant inverse correlation between the isochron ages and the corresponding initial ratios. It is probable that the igneous precursors of the gneisses intruded with initial87Sr/86Sr ratios well below 0.701.  相似文献   
9.
The Neoproterozoic Volta basin of Ghana (~115,000 km2; depth up to 5–7 km) consists of flat-lying sedimentary rocks, mainly sandstones that unconformably overlie the crystalline basement of the West-African craton. The stratigraphical column has been subdivided into three main units, in upward succession the Bombouaka, Oti and Obosum Groups, but poor exposure has resulted in major disagreements on stratigraphical correlations and on the areal extents of these units. Geochemical data (major and trace element concentrations as well as Rb–Sr, Pb and Sm–Nd isotope data) on siltstones and mudstones, intercalated with the sandstones from the different units, were used in an attempt to solve some of these problems. Siltstones and mudstones from the Bombouaka Group can be unequivocally distinguished from similar rocks from the Oti and Obosum Groups by higher K2O and Rb, larger Eu anamalies, higher 87Sr/86Sr, and more negative ?Nd values. Geochemical distinction between samples from the Oti and Obosum Groups is ambiguous because published geological maps differ with respect to the relative extents of the Oti and Obosum Groups. Rb–Sr isotope data, combined with high degrees of correlation between the concentrations of K and Rb, and Ca and Sr, indicate that mobility of these elements did not significantly change their concentrations during surface weathering. The clear geochemical distinction between mudstones and siltstones from the Bombouaka Group and similar rocks from the Oti and Obosum Groups is used to solve one of the outstanding controversies regarding the stratigraphy of the Volta basin.  相似文献   
10.
The Archaean gneiss block of Greenland is made up of gneisses, amphibolites, anorthositic rocks and minor supracrustals. It contains the oldest crustal rocks yet recorded on earth. The Archaean gneiss block is bordered to the north and to the south by Proterozoic mobile belts. The Nagssugtoqidian and Rinkian mobile belts to the north, differentiated on the basis of differences in the tectonic development, consist mainly of reworked Archaean rocks. Early Proterozoic supracrustal rocks are prominent in the Rinkian mobile belt, where they overlie the Archaean basement. The Ketilidian mobile belt to the south consists mainly of Proterozoic supracrustal rocks and granites. After renewed denudation late Proterozoic supracrustal rocks were deposited in North and South Greenland where they are associated with large amounts of late Proterozoic intrusive rocks.
Zusammenfassung Das Archaische Kraton Grönlands ist aus Gneisen, Amphiboliten, anorthositischen und untergeordneten Suprakrustal-Gesteinen aufgebaut. Es enthält die ältesten bis jetzt gefundenen krustalen Gesteine. Das Archaische Kraton ist gegen Norden und gegen Süden von Proterozoischen Orogenen begrenzt. Die Nagssugtoqidischen und Rinkischen Orogene gegen Norden, die sich durch ihre verschiedene tektonische Entwicklung unterschieden, bestehen hauptsächlich aus aufgearbeiteten Archaischen Gesteinen. Früh-Proterozoische Suprakrustal-Gesteine spielen eine wichtige Rolle im Rinkischen Orogen, wo sie das Archaische Grundgebirge überlagern. Gegen Süden besteht das Ketilidische Orogen hauptsächlich aus Proterozoischen Suprakrustal-Gesteinen und Graniten. Nach erneuerter Denudation wurden spätproterozoische Suprakrustal-Gesteine in Nord- und Südgrönland abgelagert. Diese sind assoziiert mit bedeutenden Mengen von spätproterozoischen Intrusivgesteinen.

Résumé Le socle archéen du Groenland est composé principalement de gneiss, d'amphibolites et d'anorthosites avec accessoirement des roches supracrustales. Dans ce socle se trouvent les roches les plus âgées de l'écorce terrestre trouvées jusqu'à présent. Au nord et au sud, le socle archéen est flanqué par des ceintures orogéniques protérozoïques. Au nord on trouve le Nagssugtoqidien et le Rinkien qui ont des styles tectoniques différents, et sont composés principalement de roches archéennes transformées. Dans le Rinkien les roches supracrustales du début du Protérozoique jouent un rôle important; elles y recouvrent les gneiss archéens. Au sud du socle archéen, la ceinture orogénique du Kétilidien est composée principalement de roches supracrustales et de granite protérozoïques. Après une période de dénudation intense, des sédiments et des laves d'âge protérozoïque tardif se sont déposées gans le nord et le sud du Groenland en association avec d'abondantes roches intrusives.

, , , , , , . ; , , . . . , . . . . , .
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号