首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
  国内免费   1篇
大气科学   3篇
地球物理   10篇
地质学   25篇
海洋学   19篇
天文学   8篇
自然地理   4篇
  2024年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2011年   7篇
  2009年   2篇
  2008年   2篇
  2007年   8篇
  2006年   6篇
  2005年   4篇
  2004年   1篇
  2003年   5篇
  2002年   2篇
  2000年   4篇
  1998年   4篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1990年   1篇
  1989年   1篇
  1984年   1篇
  1983年   1篇
  1980年   3篇
  1979年   2篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
1.
The presence of organic ligands (L) whose conditional stability constants (KML) are strong enough to allow them to form complexes with copper has been reported in oceanic waters. However, there is no general agreement on the distributional characteristics of such strong ligands in the water column. We present that these inconsistencies are derived from not only different analytical methods employed for their detection but also different oceanographic conditions. In particular, the nature and quantities of detectable natural ligands are affected by what kind of form the ligands are presentin situ in different marine environments, that is, chemical speciation of natural ligands (ligand speciation), which depends strongly on the variations in concentrations of coexisting trace metals. Using published data from observations in the laboratory and the field, we provide limits to the ranges of conditional stability constants of organic ligands for copper, zinc and cadmium that are detectable by the extensively used direct metal-titration method. For example, our model indicates that organic ligands for copper with log KCuL(Cu)>12.4 in surface water and with log KCuL(Cu)>9.9 in deep water might not have been detected because stronger ligands had formed complexes with ambient metalsin situ at a station in the North Pacific. The estimation suggests that there is a basinscale difference in speciation of natural organic ligands and, moreover, that this difference influences metal speciation. It is postulated that comparisons of the occurrence and levels of organic ligands might not be possible among spatially and temporally different observations without reconciliation of the effects of speciation of the ligands, even if an identical method is used in every case.  相似文献   
2.
A precise and accurate technique for the determination of Li and Rb in sea water has been developed by using a double channel flame emission spectrophotometer. The advantage of this technique is that it is possible to correct the background emission by making use of the double channel system of the apparatus and to obtain constant intensity of emission even if there are large scale changes in the salinity of the sample. Sea water samples collected in the open sea and coastal areas of Japan were analyzed by this method. In one of the coastal areas, an extraordinarily high concentration of Li was found.  相似文献   
3.
A method for the determination of barium in sea water was investigated using inductively coupled plasma emission spectrometry, and sea water samples from the Japan Sea and the Pacific Ocean were directly analyzed by this method. Artificial sea water was used to prepare matrix matched standard solutions to overcome the problem of physical interference. The detection limit (signal/noise ratio=2) for barium in deionized and distilled water was 0.08µg l?1 and in sea water, 0.12µg l?1. The reproducibilities in the purified water and in the sea water at the 10µg l?1 level were 0.7% a#FFFFFFnd 0.5%, respectively. The barium concentration in both the Japan Sea and the Pacific Ocean increased with depth and ranged between 5.5–10.0µg l?1 and 4.1–18.4µg l?1, respectively.  相似文献   
4.
Processes and rates of weathering in representative tuff obtained from a Green Tuff region were directly examined using a new fluorescent approach. This approach was developed to visualize microscopically the microcracks and micropores that contribute to deterioration. The following observations were made. Progression of tuff weathering is caused by a delicate balance between chemical alteration and physical disintegration. Weathering occurs in many hidden microcracks and micropores not detected under natural light, but which can be clearly visualized under ultraviolet light. Water pathways, such as microcracks and cavities, accelerated the chemical alteration by increasing the effective surface area of rocks in contact with water. As the reaction proceeds, the constituent materials loosen and alteration products become widespread in the matrix. Secondary amorphous to poorly crystallized materials, such as iron hydroxide and aluminosilicate, precipitate on the fracture surfaces, slowing the progress of weathering. At the ultimate stage of weathering in tuff, all cracks and most of the micropores are filled with secondary materials. These observations on a microscopic scale during tuff weathering agree with the assessment of weathering obtained by measuring porosity, P-wave velocity and tensile strength.  相似文献   
5.
Abstract Melting experiments have been carried out on an olivine andesite of Mt Yakushi-Yama from the Miocene Setouchi volcanic belt in northeastern Shikoku, Japan. This andesite has been characterized by a low ratio of FeO*/Mg° (= 0.78). Phase relations have been determined within the pressure range of 2.8 to 19.3 kbar at 1000-1300°C under anhydrous and water-saturated conditions. At pressures less than 8.8 kbar, olivine is a liquidus phase. Orthopyroxene appears on the liquidus at 9.3 kbar under the anhydrous conditions. The multiple saturation point rises up to 17.5 kbar for water-saturated experiments. The andesite melt coexists with olivine and orthopyroxene just below the liquidus at 8.8–9.3 kbar and 1230°C for dry conditions, and at 17.5 kbar and 1060°C under water-saturated conditions. These experimental results indicate that the Yakushi-Yama olivine andesite magma could coexist with a harzburgitic mantle at depths between about 30 and 60 km, and at temperatures between 1060 and 1230°C. Experimental data also suggest a possibility that a high magnesian andesite magma would be generated by a direct partial melting of the uppermost harzburgitic mantle under anhydrous conditions.  相似文献   
6.
Cobalt is obtained mainly as a byproduct of the mining and metallurgical processing of copper and nickel. The amount of minable cobalt has a characteristic supply limit, which is dependent upon demand for copper and nickel. It is considered that cobalt consumption will be affected by the amount mined in the near future, because world demand has been gradually increasing, while the production from copper sulfide ores in Zaire and Zambia, major producing countries, has decreased for political, economical and technological reasons. The world demand for cobalt has surpassed the world mine production, and cobalt sales from the National Defense Stockpile of the United States and exports from Russia and cobalt recovered from stockpiled intermediates contributed to the supply in 1994. It is concluded, from a statistical point of view, that this trend of shortage and high prices for cobalt will continue in the near future.  相似文献   
7.
On a time-symmetric Hermite integrator for planetary N-body simulation   总被引:2,自引:0,他引:2  
We describe a P(EC) n Hermite scheme for planetary N -body simulation. The fourth-order implicit Hermite scheme is a time-symmetric integrator that has no secular energy error for the integration of periodic orbits with time-symmetric time-steps. In general N -body problems, however, this advantage is of little practical significance, since it is difficult to achieve time-symmetry with individual variable time-steps. However, we can easily enjoy the benefit of the time-symmetric Hermite integrator in planetary N -body systems, where all bodies spend most of the time on nearly circular orbits. These orbits are integrated with almost constant time-steps even if we adopt the individual time-step scheme. The P(EC) n Hermite scheme and almost constant time-steps reduce the integration error greatly. For example, the energy error of the P(EC)2 Hermite scheme is two orders of magnitude smaller than that of the standard PEC Hermite scheme in the case of an N  = 100,  m  = 1025 g planetesimal system with the rms eccentricity 〈 e 21/2 ≲0.03.  相似文献   
8.
Tadao  Nishiyama  Aiko  Tominaga  Hiroshi  Isobe 《Island Arc》2007,16(1):16-27
Abstract We carried out hydrothermal experiments in the system dolomite‐quartz‐H2O to track the temporal change in reaction rates of simultaneous reactions during the development of reaction zones. Two types of configurations for the starting materials were prepared: dolomite single crystals + quartz powder + water and quartz single crystals + dolomite powder + water, both sealed separately in gold capsules. Runs at 0.1GPa and 600°C with cold seal pressure vessels gave the following results. (i) In short duration (45–71 h) runs metastable layer sequences involving wollastonite and talc occur in the reaction zone, whereas they disappear in longer duration (168–336 h) runs. (ii) The layer sequence of the reaction zones in short duration runs differs from place to place on the dolomite crystal even in the same run. (iii) The diversity of layer sequences in the short duration runs merges into a unique layer sequence in the longer duration runs. (iv) The reaction zone develops locally on the dolomite crystal, but no reaction zone was observed on the quartz crystal in any of the runs. The lines of evidence (i)–(iii) show that the system evolves from an initial transient‐ to a steady‐state and that the kinetic effect is important in the development of reaction zones. A steady diffusion model for the unique layer sequence Qtz/Di/Fo + Cal/Dol + Cal/Dol shows that the Dol + Cal layer cannot be formed by diffusion‐controlled process and that the stability of the layer sequence Qtz/Di/Fo + Cal/Dol depends not only on L‐ratios (a = /LCaOCaO and b = /LMgOMgO) but also on the relative rate P = (−2ξ1ξ2)/(–ξ1 − 2ξ2) of competing reactions: Dol + 2Qtz = Di + 2CO2 (ξ1) and 2Dol + Qtz = Fo + 2Cal + 2CO2 (ξ2). For smaller P the stability field will shift to higher values of a and b. The steady diffusion model also shows that the apparent‐non‐reactivity on the quartz surface can be attributed to void formation in a large volume fraction in the diopside layer.  相似文献   
9.
Spinifex-like textured metaperidotites from the Higo Metamorphic Rocks (HMR), west-central Kyushu, Japan, may be formed by high-pressure dehydration of antigorite, and may indicate deep subduction of serpentinite reaching a pressure–temperature condition of 1.6 GPa and 740–750 °C. Three rock types have been identified based on mineral assemblage and rock texture: Type I (L) consisting of medium-grained (1–5 cm long) olivine + enstatite + chromite ±tremolite with secondary talc and anthophyllite that occurs in low-grade metamorphic rocks of the biotite zone, Type I (H) of coarse-grained (up to 10 cm long) olivine + enstatite (with clinoenstatite lamella) + chromite ±tremolite with secondary talc that occurs in high-grade metamorphic rocks of the garnet-cordierite zone, and Type II composed of Al-spinel + chlorite + olivine + apatite + ilmenite with minor sodic gedrite in the garnet-cordierite zone together with Type I (H). Olivines in all rock types are mostly serpentinized during exhumation. The chromite-olivine thermometer gives 560–690 °C for Type I (L) rocks, and the spinel-olivine thermometer gives 610–740 °C for Type II rocks. The peak metamorphic pressure will be higher than 1.6 GPa based on the location of the experimentally determined invariant point (P = 1.6 GPa and T = 670 °C) of antigorite + forsterite + enstatite + talc + H2O. This estimate is consistent with the occurrence of chlorite in Type II rocks, which is stable up to 890 °C at 2.0 GPa. The spinifex-like textured metaperidotites occur as small bodies in the low P/T type gneisses, implying tectonic juxtaposition of them probably during exhumation of the HMR. Recent findings of medium pressure (0.9–1.2 GPa) granulites and gneisses from the HMR may indicate that the HMR has a deep root into the wedge mantle from which the spinifex-like textured metaperidotites have derived.  相似文献   
10.
Acid mine drainage (AMD) is a widespread environmental problem associated with working and abandoned mining operations. It results from the microbial oxidation of pyrite in the presence of water and air, affording an acidic solution that contains toxic metal ions. Pyrite microencapsulation, utilizing silica coating, is a novel approach for controlling AMD that has been shown to be very effective in controlling pyrite oxidation. The roles of the solution pH and silica concentration in the formation mechanism for the AMD-preventing coating were investigated. A silica coating can be formed from silica solution at pH 7, at which the amount of Fe eluted from pyrite into the solution is small. No coating was formed at other pH values, and the amounts of eluted Fe were larger than at pH 7, especially at pH 11. The silica coating forms from 2,500 to 5,000 mg/L silica solutions, but not from 0 or 1,000 mg/L silica solutions. The coating formation rate was slower in the 2,500 mg/L silica solution than in the 5,000 mg/L silica solution. The formation of silica coating on pyrite surfaces depends on three main steps: formation of Fe(OH)3 on the surface of pyrite, reaction between Fe(OH)3 and silicate in the solution on the pyrite surface, and growth of the silica layer on the first layer of silica. The best pH condition to enable these steps was around 7, and the silica coating formation rate can be controlled by the concentration of silica.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号