首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
海洋学   1篇
  2008年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A four month study of a man-made lake used for hydroelectric power generation in northeastern Pennsylvania USA was conducted to investigate seasonal anoxia and the effects of sulfide species being transported downstream of the power generation equipment. Water column analyses show that the system is iron-rich compared to sulfide. Total Fe(II) concentrations in the hypolimnion are typically at least twice the total sulfide levels. In situ voltammetric analyses show that free Fe(II) as [Fe(H2O)6]2+ or free H2S as H2S/HS- are either not present or at trace levels and that iron-rich sulfide complexes are present. From the in situ data and total Fe(II) and H2S measurements, we infer that these iron-rich sulfide complexes may have stoichiometries such as Fe2SH3+ (or polymeric forms of this and other stoichiometries). These iron-rich sulfide complexes appear related to dissolution of the iron-rich FeS mineral, mackinawite, because IAP calculations on data from discrete bottle samples obtained from bottom waters are similar to the pKsp of mackinawite. Soluble iron-sulfide species are stable in the absence of O2 (both in lake waters and the pipeline) and transported several miles during power generation. However, iron-sulfide complexes can react with O2 to oxidize sulfide and can also dissociate releasing volatile H2S when the waters containing them are exposed to the atmosphere downstream of the powerplant. Sediment analyses show that the lake is rich in oxidized iron solids (both crystalline and amorphous). Fe concentrations in FeS solids are low (<5 μmole/grdry wt) and the pyrite concentration ranges from about equal to the solid FeS to 30 times the solid FeS concentration. The degree of pyritization is below 0.12 indicating that pyrite formation is limited by free sulfide, which can react with the iron-rich sulfide complexes.  相似文献   
2.
Solid-state voltammetric (micro)electrodes have been used in a variety of environments to study biogeochemical processes. Here we show the wealth of information that has been obtained in the study of sediments, microbial mats, cultures and the water column including hydrothermal vents. Voltammetric analyzers have been developed to function with operator guidance and in unattended mode for temporal studies with an in situ electrochemical analyzer (ISEA). The electrodes can detect the presence (or absence) of a host of redox species and trace metals simultaneously. The multi-species capacity of the voltammetric electrode can be used to examine complex heterogeneous environments such as the root zone of salt marsh sediments. The data obtained with these systems clearly show that O2 and Mn2+ profiles in marine sedimentary porewaters and in microbial biofilms on metal surfaces rarely overlap indicating that O2 is not a direct oxidant for Mn2+. This lack of overlap was suggested originally by Joris Gieskes' group. In waters emanating from hydrothermal vents, Fe2+, H2S and soluble molecular FeS clusters (FeSaq) are detected indicating that the reactants for the pyrite formation reaction are H2S and soluble molecular FeS clusters. Using the ISEA with electrodes at fixed positions, data collected continuously over three days near a Riftia pachyptila tubeworm field generally show that O2 and H2S anti-correlate and that H2S and temperature generally correlate. Unlike sedimentary environments, the data clearly show that Riftia live in areas where both O2 and H2S co-exist so that its endosymbiont bacteria can perform chemosynthesis. However, physical mixing of diffuse flow vent waters with oceanic bottom waters above or to the side of the tubeworm field can dampen these correlations or even reverse them. Voltammetry is a powerful technique because it provides chemical speciation data (e.g.; oxidation state and different elemental compounds/ions) as well as quantitative data. Because (micro)organisms occupy environmental niches due to the system's chemistry, it is necessary to know chemical speciation. Voltammetric methods allow us to study how chemistry drives biology and how biology can affect chemistry for its own benefit.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号