首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
地质学   3篇
  2014年   1篇
  1968年   1篇
  1966年   1篇
排序方式: 共有3条查询结果,搜索用时 109 毫秒
1
1.
2.
KLEIN  CORNELIS  JR. 《Journal of Petrology》1968,9(2):281-330
Chemical analyses for the following amphibole pairs are presented:anthophyllite—tremolite (or actinolite, or hornblende),cummingtonite (or grunerite)–actinolite (or hornblende),cummingtonite (or grunerite)–anthophyllite (or gedrite),and manganoan cummingtonitemagnesioriebeckite. Nineteen analyses of such pairs are quoted from the literature,and thirty-seven additional pairs have been newly analyzed byelectron probe techniques. Quantitative microprobe determinationsof Si, Al, Fe, Mn, Mg, Ca, and Na were made on polished thin-sections,using naturally occurring, analyzed, homogeneous amphibolesas standards. The literature analyses and the electron probeanalyses for metamorphic, two-amphibole assemblages are givenfor amphiboles in physical contact, which show no textural evidenceof one amphibole being a reaction or alteration product of theother. The chemical data for some of the volcanic, two—amphiboleassemblages were obtained from occurrences that probably donot represent equilibrium pairs. The chemical data are used to determine the extent of the miscibilitygaps between the various amphibole series and the fractionationof the major elements between the two amphiboles of a pair.Anthophyllite and members of the cummingtonite-grunerite seriesgenerally have a larger Fe(total)/Mg ratio than the coexistingcalcic amphibole. The maximum CaO, Al2O3and Na2O contents ofcummingtonite in metamorphic cummingtonite—hornblendepairs are 19 and 32, 02 weight per cent, respectively. Themaximum CaO, A12O3, and Na2O contents of cummingtonite in metamorphiccummingtonite-hornblende pairs are 19, 32, and 02 weightper cent, respectively. Larger CaO and Al2O3 values reportedin the literature were found to be too high because of admixtureof actinolite or hornblende in the analyzed separates. Smallamounts of MnO tend to concentrate preferentially in anthophylliteor cummingtonite of anthophyllite-hornblende and cummingtonite-hornblendepairs. Anthophyllite-cummingtonite pairs may show very similarFe(total)/Mg ratios and differ slightly in Al2O3 content only.  相似文献   
3.
KLEIN  CORNELIS  JR. 《Journal of Petrology》1966,7(2):246-305
The Wabush Iron Formation, of late Precambrian (Proterozoic)age is part of the Labrador Trough in southwestern Labrador,Canada. It is the regionally metamorphosed equivalent of lowgrade metamorphic (chlorite zone) iron-rich sediments of thecentral part of the Labrador Trough. The metamorphic grade iskyanite-staurolite zone, as concluded from conformably underlyingpelitic schist assemblages. Sedimentary textural features suchas very pronounced banding and a very rare occurrence of relicgranules are still preserved. The iron formation consists mainly of quartz, specularite, magnetite,cummingtonite-grunerite, and ferrodolomite-ankerite. Less commonare actinolite, anthophyllite, riebeckitetremolite, magnesioriebeckite,ferrosalite, orthopyroxene, aegirine-augite, aegirine, rhodonite,garnet (almandine, spessartine, calderite), siderite, rhodochrosite,calcite, and kutnahorite. Conventional wet chemical analyses or electron microprobe analyseshave been made of thirty-four phases belonging to the abovelist. Six additional electron probe analyses have been madeof phases from the underlying pelitic schists. All conventionallyanalyzed phases are characterized by complete optical, unitcell parameter, and density measurments. The analyzed assemblages from the silicate and silicate-carbonateiron formation include grunerite-ferrosalite, grunerite-eulite-siderite,grunerite-actinolite, grunerite-almandine, cummingtonite-spessartine,rhodonite-kutnahorite-calderite, aegirine-augite-riebeckite-tremolite,magnesioriebeckite-cummingtonite-rhodonite, aegirine-augite-rhodonite-rhodo-chrosite,and aegirine-rhodonite-calderite-rhodochrosite. The assemblages are concluded to be equilibrium assemblages.Of the volatile components, O2, CO2, and H2O, O2, is concludedto have behaved as an inert (buffered) component. Variationsin the activity of CO2 are concluded to have existed betweensilicate-oxide and carbonate-oxide members of the iron formation.It is not clear, however, whether CO2 has acted as a perfectlymobile component with strong aco2 gradients throughout the area,or as an inert component in some parts of the area. H2O is consideredto have been perfectly mobile. An increase in Mg/(Mg+Fe) ratioin ferromagnesian silicates is correlated with an increase inthe oxidation state of the assemblage. A similar increase in(Mg+Mn)/(Mg+Mn+Fe) is found in manganoan ferromagnesian silicateswith increasing activity of O2. A number of ferromagnesian silicatescontain large amounts of Na+ and Fe3+ as a result of the verylow Al2O3 content of the iron formation. The P and T conditionsof metamorphism are deduced from experimental studies applicableto the underlying pelitic schists.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号